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Abstract 

 

 

Gouging is a type of structural failure that becomes important when two metals 

slide against each other at velocities in the range of 1.5 kilometers per second.  A 

computer model has previously been used to model the development of gouging at the 

Holloman High Speed Test Track.  This model has not been experimentally verified to be 

correct, due to the complexity of the model.  This research develops a simplified model 

that can be experimentally verified.   

The computer program utilized in this research was studied to determine the most 

appropriate options to use in simulations.  This was accomplished by modeling a Taylor 

impact test and comparing to published experimental results.  

The cylindrical impact specimen utilized in the simplified model was developed 

through use of the Buckingham-Pi theorem, and can be fired from most standard 

compressed air guns.  Simulations using the simplified model showed excellent 

agreement with simulations using the physical sled properties.  Plasticity observed in 

both the rod and target was very similar to that seen in the physical sled simulations.  The 

high- pressure core, which initiates gouging in the physical sled simulation, was found to 

exist in the simplified model as well. 
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AN INVESTIGATION OF A SIMPLIFIED GOUGING MODEL 
 

 

Chapter 1 – Introduction 
 
 
 

In recent years, the United States Air Force (USAF) has spent considerable 

money and effort investigating methods to improve the understanding of very high 

velocity impact testing.  The Air Force utilizes a sophisticated test facility located at 

Holloman Air Force Base (AFB) in New Mexico to perform the majority of the advanced 

tests that they perform.  The main system consists of a narrow gauge rail system 

approximately ten miles long, which is used to guide a rocket sled, see Figure 1, at 

extremely high velocities.  In April 2003, the Holloman High Speed Test Track (HHSTT) 

achieved a world record velocity of 2884.9 m/s.  The 846th Test Squadron, which 

operates the HHSTT, is working to increase the maximum velocity to 10,000 ft/s or 

approximately 3 km/s. 

 
Figure 1– Rocket Sled at HHSTT 
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In order to increase the maximum velocity of the test track, engineers at the 846th 

Test Squadron and the Air Force Institute of Technology (AFIT) are investigating 

methods that will mitigate the phenomenon known as gouging.  The rocket sled seen in 

Figure 1 is attached to the narrow gauge rail, which is made of 1080 steel, via four 

slippers, which are made of high strength VascoMax 300 steel, seen schematically in 

Figure 2.  Gouging typically occurs at velocities greater than 1.5 km/s, and can range in 

severity from a shallow gouge more reminiscent of damage, to a total structural failure of 

the sled/rail assembly. 

 

 
Figure 2 – Slipper/Rail Attachment 

According to Laird [1], gouging occurs “when inertial forces are so great that the 

materials exhibit fluid like behavior.  Shock induced pressure creates a region of 

plasticity under the location of impact.  Tangential motion of one body with respect to the 

other deforms or shears material at these points and results in deformation of the parallel 

surfaces that impinge on each other in a continuous interaction.”  Gouges occur due to the 
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fact that gaps exist between the slipper and the rail, which allows the rocket sled to move 

perpendicular to the rail direction, as well as to yaw, pitch, and roll.  Any of these relative 

motions can create a situation whereby the slipper impacts the rail at an extremely high 

velocity, which in some cases can cause gouging to occur.  A typical gouge is seen in 

Figure 3. [2] 

 

Direction of 
Sled Travel

Figure 3 – Gouged Rail Section 

  A gouge in the rail material is characterized by a ridge of material in front of the 

initiation point, followed by a steep drop into the gouge, which gradually gets shallower 

as the gouge continues to form, until the slipper loses contact with the rail and the 

gouging is complete.  The schematic view of a gouge seen in Figure 4 shows the classic 

teardrop shape common to most gouges.[3]  A typical gouge is approximately 15.0 cm 

long by around .6 cm deep. 

 

Direction of 
Sled Travel 

Figure 4 – Schematic View of Gouge 
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The question of the magnitude of the vertical velocity with which the slipper 

strikes the rail was answered by Hooser [4] via a simulation of a 10,000 ft/s (3048 m/s) 

rocket sled test using the Dynamic Analysis and Design System (DADS).  Hooser found 

that the vertical velocities tended to be on the order of 1-2 m/s when a horizontal velocity 

of 1.5 km/s was used.  This shows that the impacts occurring during a typical HHSTT 

experiment are at angles of approximately 0.03 degrees. 

Both Laird and Szmerekovsky have studied the slipper and rail interactions 

analytically using the Sandia National Laboratory hydrocode CTH.  The Szmerekovsky 

model is accepted as the standard simulation of the gouging phenomena, because he used 

the actual test sled conditions to perform the simulation.  The work of these authors 

proved very useful in understanding and modeling the physics of what was occurring as a 

gouge forms, however due to the complexities of the models that were used, they were 

not able to be verified experimentally.  A model which captured the important gouging 

phenomena, yet was simple enough to be verified experimentally would be helpful, as it 

would allow simple simulations and experiments which would give operators at HHSTT 

an idea of what conditions would create gouging.  Knowing when gouging would occur 

would allow operators to avoid certain test configurations or slipper geometries, and 

possibly allow the design of a slipper that would eliminate gouging. 
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Chapter 2 - Background and Theory 
 
 
 

2.1 Conservation Equations 

 

Virtually all fields of mechanics and dynamics are based upon the same three 

fundamental conservation laws: the conservation of mass, the conservation of 

momentum, and the conservation of energy, however they become extremely important 

when the problem is dependent upon inertia.  These equations are presented here for 

completeness. 

Conservation of mass states that mass cannot be created nor destroyed.  

Mathematically this is stated 

         (1) ∫ =
V

constantdVρ

where ρ is density and V is the volume of the material. 

The conservation of momentum can be stated in a number of different ways.  

Perhaps the simplest statement is that force equals mass times acceleration, or  

    
dt
dvmF =       (2) 

where F is the force applied, m is the mass acted upon, v is the velocity of the mass, and t 

is the time over which the event occurs.  Another useful statement of the conservation of 

momentum is the impulse-momentum relation, which is obtained by multiplying both 
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sides of the conservation of momentum equation by dt and integrating over a period of 

time, giving 

 ∫ ∫ −=== of mvmvmdvFdtI     (3) 

where I is the impulse applied over some period of time by the applied force, vf and vo are 

the initial and final velocities of the mass, and therefore the right hand side of the 

equation is the momentum change over some time period.  This represents the 

conservation of linear momentum.  A similar equation for the conservation of angular 

momentum exists as well, which leads to the fact that the stress tensor is symmetric, 

jiij σσ = . 

Lastly, the conservation of energy equation written for a discrete set of j masses is 

∑∑ →+⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ +

jj
oo WvEvE 10

2
11

2

2
1

2
1 ρρ    (4) 

where E is the internal energy source, the 2

2
1 vρ  terms are the kinetic energy, and is 

the work done on the system.  The subscript 0 represents the initial state and the subscript 

1 represents the final state. 

10→W

 

2.2 Stress Waves in a Continuum 

 

Stress waves develop in materials every time that a pressure is applied.  In 

continuum mechanics this fact is often ignored and the loading is said to be either static 
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or quasi-static.  This practice works well in most structural analysis problems where 

pressure or loads are applied very slowly, but in higher velocity impact dynamics 

problems, this assumption is a poor simplification of what actually occurs. 

A stress wave develops when a load is applied instantaneously; the material 

particles immediately surrounding the application point initially support all of the 

pressure via local acceleration.  As the affected particles accelerate, they build up 

compressive stresses in the particles further from the application point.  The material 

particles behind the wave begin to accelerate as well, as the particles that were initially 

struck continue to move to support the pressure applied, compressive stresses develop 

behind the wave.  When the compressive stress is equivalent to the applied pressure, the 

relative motion can stop, because the pressure applied is supported by the compressive 

stress that has been developed.  This process continues further away from the impact 

point, until the whole material experiences the stress wave.[5]  The motion of these so 

called particles is what is governed by the conservation of momentum equation, which 

allows the calculation of the particle velocities, which is dependent upon the impact 

velocity.  The speed of propagation of the stress wave however will be shown to be a 

material property. 

A dynamic impact event can create stress waves of widely varying intensities and 

velocities depending upon the impact velocity.  At very low velocities, an elastic wave 

will form which deforms the rod elastically.  At higher velocities an elastic wave will 

form, followed by a slower moving plastic wave, which will plastically deform a portion 
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of the material.  At velocities greater than the wave propagation velocity of the material, 

generally 2 km/s, a shock wave is formed.[5] 

 
 
 

2.2.1 Elastic Stress Waves 
 

Simplifying the general impact case to one of a uniaxial rod impact, it is possible 

to calculate the magnitude of the elastic stress wave applied to the rod.  Assume that an 

initially stationary rod is impacted by a rigid, semi-infinite plate moving with a constant 

velocity of vo, which is less than the material sound speed c, from the left, as seen in 

Figure 5.  After the impact, an elastic stress wave develops which travels to the right at 

the material sound speed.  Behind the stress wave, the particles have been accelerated to a 

velocity equal to the impact velocity vo.   

 

Figure 5 – Rod Impact Experiment 

An impulse-momentum balance shows that all material behind the stress wave is 

in motion, and therefore the momentum of that material is 
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otvAc∆ρ      (5) 

where c∆t is the length of the rod which is moving with a particle velocity of vo and A is 

the cross sectional area of the rod.  Therefore Ac∆t is the volume of material moving with 

a particle velocity of vo.   

The impulse is known to be the integral of the force over a period of time.  In this 

uniaxial case, the force is the stress times the area over which it acts, giving an impulse of  

Adtσ       (6) 

where σ is the compressive stress occurring due to the passage of the stress wave.  

Applying the conservation of momentum to these two equations, assuming an 

infinitesimal time step, and dividing both sides by the area and the time step gives the 

magnitude of the elastic compressive stress wave as 

ocvρσ =       (7) 

where c is the material sound speed. 

The speed of sound in a material is a direct result of the wave equation 

encountered in differential equations.  To begin, imagine an element of material through 

which a disturbance is passing, see Figure 6.  The edges of the element are at positions of 

x and x+dx as measured from a fixed coordinate system.   

Assuming that tension is positive in the positive x direction, the stress on the left 

and right sides of the element are 
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xσ−    and  x
x

x ∂
∂

+
σ

σ     (8) 

respectively.  The conservation of momentum for the infinitesimal element of area A is 

given by 

( ) ( )dvAdt
x

AdtA x
xx ρ

σ
σσ =⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

++−    (9) 

where the left side of the equation is the impulse applied due to the stress on the left and 

right sides, and the right side of the equation is the momentum imparted over a time step.   

 
Figure 6 – Material Element 

Dividing both sides by gives Adt

dt
dv

x
x ρσ

=
∂

∂
.      (10) 

Utilizing the knowledge that strain and velocity are 

x
u

∂
∂

=ε   and  t
uv

∂
∂

=      (11) 
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it can be proven that  

x
v

t ∂
∂

=
∂
∂ε

.       (12) 

If it is assumed that stress is a function only of strain, then the previous equations can be 

combined to give the classic one-dimensional wave equation, 

2

2

2

2
2

t
u

x
uc

∂
∂

=
∂
∂

     (13) 

where  

( )
ρ

ε
σ

ε d
d

c =2
.     (14) 

For the case where the impact is elastic, the numerator is actually the elastic modulus of 

the material, which gives the wave velocity in the case of an elastic impact as, 

  ρ
mEc =       (15) 

where Em is the elastic modulus of the material and ρ is the density of the material. [5] 

It is also interesting to understand how waves propagate through a medium, and 

what occurs at material boundaries.  This information, along with the definition of stress 

in a one-dimensional impact, will be used later to verify an impact model developed.  

Assume that a homogenous metal rod, Figure 7, strikes a semi-infinite rigid wall at a 

velocity of vo perpendicular to the wall.  In this case we will assume that there are no 
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three-dimensional effects due to the impact, that the impact is completely elastic, and that 

the wave velocity within the rod is constant.  Immediately before impact, the rod is 

moving at a uniform velocity of vo and the internal stress is uniformly zero. 

 
Figure 7 – Rod Impact Experiment 

At the moment of impact, a stress wave is formed which travels to the right at the 

wave velocity of the material, here repeated as 

ρ
mEc =        (16) 

To the left of the wave, a constant particle stress of 

ocvρσ =        (17) 

is developed throughout the rod.  To maintain continuity at the boundary of the impact, it 

is required that the materials on either side of the boundary must have the same velocity.  

Therefore, the impacted end of the rod must immediately slow down to a velocity of zero, 

because the rigid wall has no velocity, Figure 8.  While the left end of the rod has a zero 

velocity, the right end of the rod continues to travel to the left at the initial velocity, 
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because the right end hasn’t “felt” the impact on the left end, because the speed of sound 

in the material limits how fast a disturbance can be “felt”.  This fact will be used later in 

verifying a CTH model. 

 
Figure 8 – Rod Impact Experiment before Reflection 

At some later point in time, the stress wave has traveled the full length of the rod, 

and has reached the right end.  Since the rod has a known length of L, it is also known 

that the wave will reach the right end at 
c
Lt = .  Since the wave has traveled the length of 

the rod, the whole rod is now under a constant particle compressive stress as defined 

earlier.  Additionally, the rod has momentarily stopped since the kinetic energy of impact 

has been turned into internal strain energy, Figure 9.  

 
Figure 9 – Rod Impact Experiment at Reflection 

From mechanics of materials it is known that a free surface cannot support an 

applied stress, therefore after the reflection of the stress wave, the right side must have 
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zero stress.  This means that when a stress wave reflects from a free surface, it reflects 

with the opposite sign of what it started out as.  Therefore the initially compressive stress 

wave reflects as a tensile wave, effectively zeroing the stress behind the now left running 

wave.  Since the stress wave was initially moving to the right, and there is no constraint 

on the right side, the right hand side of the rod continues to travel to the right, while the 

tensile stress wave continues to the left, Figure 10.  This fact will also be used to verify a 

CTH model. 

 
Figure 10 – Rod Impact Experiment after Reflection 

  When the stress wave returns to the left hand end of the rod, it is attempting to 

apply a tensile load to the rigid wall, which is impossible since the materials are not 

physically joined in any manner.  Since the tensile stress can’t be supported by the 

interface, the rod then separates from the wall and rebounds away at the initial impact 

velocity, unstressed, Figure 11. 

 
Figure 11 – Rod Impact Experiment after Unloading 
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An alternative way to understand the progression of particle stress waves is 

through the use of a Lagrangian diagram, which tracks the position of stress waves within 

a rod as time progresses.  The Lagrangian diagram for the rod impact problem just 

presented is shown in Figure 12. 

 
Figure 12 – Lagrangian Diagram for Rod Impact Problem 

At the beginning of the impact event, the rod is said to be the x-axis from x=0 out to x=L.  

In region 1, the rod is unstressed, and traveling with a constant particle velocity of vo to 

the left.  At the moment of impact at point “a”, a compressive particle stress wave of 

magnitude ocvρσ =  is formed, and travels to the right through region 2.  As was 

described earlier, the particle velocity at the impacted end must be equal to zero, because 

the wall is assumed infinite; therefore in region 2, the particle velocity is zero.  When the 
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particle stress wave reaches the right side of the rod at point “b”, it must reflect as a 

tensile wave of magnitude ocvρσ = , because it must leave the free edge on the right 

stress free.  The compressive wave moving to the right imparts a particle velocity of vo to 

the right.  When the tensile wave reaches the wall at point “c”, it attempts to apply 

tension to the wall, but finds that there is no resistance to this tension, and therefore the 

rod pulls away from the wall, and moves off to the right, in an unstressed state.   

 

2.2.2 Plastic Stress Waves 
 

The stress-strain curve for most materials is characterized by a linear elastic 

portion at low strains, followed by another region that may or may not be linear as well, 

see Figure 13.  The point where stress-strain behavior stops being strictly elastic is known 

as the elastic limit, dynamic yield stress, or Hugoniot elastic limit.  When a material is 

acted upon by a stress greater than this limiting value of stress, the material plastically 

deforms.  In an impact experiment, the initial stress wave is an elastic stress wave, which 

is followed by a plastic stress wave that initiates when the particle stress applied reaches 

the dynamic yield stress.  This plastic stress wave is slower than the elastic stress wave. 
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Figure 13 – Generic Stress-Strain Curve 

Two basic theories have been developed for describing the propagation of a 

plastic wave.  The theories differ in their assumption of the importance of the strain rate 

in determining material response.  The first theory for describing the behavior of 

materials undergoing plastic deformation is called the rate-independent theory.  As the 

name implies, this theory makes the assumption that there is a single dynamic stress-

strain curve that describes material behavior, regardless of the rate at which the strain is 

applied.  This theory arose from the assumption that a material had a bilinear stress-strain 

curve, as seen in Figure 14.  This theory predicted two distinct wave fronts would be 

formed, and would propagate through the material at distinct velocities, each of which 

was related to the slope of the stress strain curve at the given level of strain.  The elastic 

stress wave would travel at the elastic wave speed given earlier as, 
ρ

mEc = , and have a 

magnitude equal to ocvρσ = .  The plastic wave would have a similarly developed wave 

velocity of, 
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ρ
p

p

E
c =        (18) 

where Ep is the slope of the stress strain curve in the plastic region and cp is the plastic 

wave speed.  The magnitude of the stress wave would then be 

opp vcρσ =        (19) 

where σp is the plastic stress wave magnitude. Figure 14 shows the stress strain curve of a 

bilinear metal, as well as a sample wave profile.[6] 

 
Figure 14 – Bilinear Stress-Strain Curve and Corresponding Wave Profile 

An alternative analysis did not use the bilinear stress-strain curve, but rather 

assumed that the stress-strain curve was concave up beyond the yield stress, see Figure 

15.  The plastic wave speed was just shown to be 

p
p

E
c

ρ
= .                 (20) 

In general however, when the slope of the plastic portion of the stress-strain curve is not 

linear, the plastic wave velocity is found using 
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pc
σ

ε
ρ

∂
∂=      (21) 

where ε
σ

d
d  is the slope of the stress-strain curve at a given strain.  This plastic velocity 

takes the form of the particle velocity behind the shock.  A material with a concave-up 

stress-strain curve is seen in Figure 15, and as the strain is increased beyond the yield 

limit at point A, the slope of the stress-strain curve, and therefore the velocity of the 

stress wave increases.  This means that the higher stress, increments move faster than the 

lower stress increments, and will eventually catch up to the lower stress increments, at 

which point a plastic shock front is formed, as shown in Figure 16.[6]   

 
Figure 15 – Concave-up Stress-Strain Curve 
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Figure 16 – Shock Formation 

The rate-dependent theory was developed in an attempt to explain some of the 

phenomena that could not be described by the rate independent theory.  The first attempt 

to include strain rate effects was called the overstress model, and was proposed by 

Malvern, with the form  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++=

•

pbf εεσ 1ln     (22) 

where f(ε) is the stress found from a quasi-static stress-strain curve, b is a constant, and 

 is the plastic strain rate.  An alternative form of the overstress model provides the 

plastic strain rate, 

•

pε

( )

⎥
⎦

⎤
⎢
⎣

⎡
= ⎟

⎠
⎞

⎜
⎝
⎛ −

−•

e a
f

p b
11 εσ

ε
   (23) 
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where the term ( )εσ f−  is the overstress.  The constants a and b are material specific 

constants, that are used to correlate with experimental data.  The overstress is the 

difference between the stress applied and the stress that would occur theoretically in a 

quasi-static test at the same strain. [6]  

 
 
 

2.2.3 Shock Waves 
 

In the case where the impact velocity is much greater than the sound speed of the 

material, a series of waves led by an elastic wave, which is overcome by a plastic wave, 

leads to the formation of a shock wave.  Shock waves are very narrow regions in a 

continuum in which velocity, temperature, and density vary in a nearly discontinuous 

fashion.  This discontinuity causes problems with the conservation equations when they 

are in a differential form, because all properties are assumed to vary in a continuous 

manner, which is untrue in the vicinity of a shockwave. 

A shock wave is formed by the coalescing of a wave front of various speeds and 

stress levels into a single sharp wave front.  The shock wave equations are developed by 

a simple application of the conservation equations presented in Section 2.1.  The easiest 

case to study is the case where a shockwave is traveling into a material that is stationary, 

stress free, and has no internal energy associated with it, see Figure 17.  For simplicity, it 

is assumed that the only action that occurs is in the direction of the shock’s velocity.  This 

simplification assumes that lateral effects can be ignored.  In the case of a finite element 

of material, this assumption may not be accurate, as shock reflections are likely to occur, 
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which changes the state of stress from one-dimensional to three-dimensional.  This 

formulation is analogous to the right end of the rod in Figure 5, because the rod is 

initially stress free and stationary.  The two states identified by subscripts 0 and 1 in 

Figure 17 represent the physical state ahead of and behind the shock, which is shown 

traveling at a velocity of U, while the local particle velocity is given by u.   

 
Figure 17 – Shock Front 

The conservation of mass applied across the shock states that the mass flow 

entering the shock must equal the mass flow leaving the shock.  In this case, the frame of 

reference is taken to be moving with the shock at a velocity of U, as seen in Figure 18.  

The velocity of the particles in front of the shock was assumed to be zero, which is why 

uo is set equal to zero. 

Mathematically the conservation of mass is given by, 

1 1( ) ( )o odA u U t dA U u t 0ρ ρ− ∆ + − ∆ =    (24) 

where the mass entering the shock from the right is found to be ( )o odA u U tρ − ∆  since 

the volume of material moved is equal to the area through which the shock passes, dA, 

multiplied by the distance the material moves relative to the shock, which is .  ( )ou U t− ∆
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Similarly, the mass entering the shock from the left is found to be ( ) tuUdA ∆− 11ρ .  

Eliminating the differential area dA and time ∆t from both sides, and remembering that 

the velocity in front of the shock is zero, we obtain the first of the shock wave equations, 

)( 11 uUUo −= ρρ .    (25) 

 

Figure 18 – Moving Coordinate Frame 

The conservation of momentum is developed in a similar manner to the previous 

discussion of elastic stress waves, except that the new terminology is used.  The change 

in momentum across the shock must equal the impulse applied, or  

tdAtudAUo ∆=∆ 11 σρ     (26) 

which can be simplified to give the analogous shock wave physics definition of stress, 

11 Uuoρσ = .     (27) 
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The last of the conservation equations to be investigated for the shock wave is the 

conservation of energy.  The conservation of energy equation says that initial internal 

energy plus any work done on the mass is equal to the final internal energy,   

1100 IEWIE =+ →      (28) 

where IE0 is the initial internal energy, IE1 is the final internal energy, and  is the 

work to go from state zero to state one.  The internal energy is a combination of the 

internal energy source per unit mass, E, plus the kinetic energy of the mass.   

10→W

000 KEEIE +=  111 KEEIE += .    (29) 

where E0 is the internal energy source per unit mass at state zero, E1 is the internal energy 

source per unit mass at state one, KE0 is the initial kinetic energy, and KE1 is the initial 

kinetic energy.  The internal energy source per unit mass can be a combination of things, 

such as a chemical reaction that releases energy, or a material with some strain energy 

that is stored.  Initially the kinetic energy is zero, because uo is zero, but in the final state 

the kinetic energy is, 

2
11 ))((

2
1 utUKE o ∆= ρ     (30) 

where tUo ∆ρ  is the mass of material which is moving, and u1 is the velocity at which it 

is moving.  After the shock has passed, the internal energy source is found to be 

( ) 111 )( EtuU ∆−ρ      (31) 
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where the mass is found using the velocity relative to the shock.  Combined, the previous 

two equations give the internal energy after the shock has passed as, 

( 111
2

11 )())((
2
1 EtuUutUIE o ∆−+∆= ρρ )   (32) 

The internal energy source in front of the shock is, 

( ) oo EtUIE ∆= ρ0       (33) 

where the term in the parentheses is the mass of material with the internal energy Eo.  

Because the mass in front of the shock was assumed stationary, this also happens to be 

the internal energy of the mass, since the kinetic energy is zero.   

Lastly, work is known to be a force carried out over some distance, which using 

the nomenclature presented here is shown to be, 

)( 1110 tuW ∆=→ σ     (34) 

there is no area in this formulation, because all properties are assumed to be applicable 

over a common area, and it is therefore eliminated at the outset. 

Combining the previous three equations gives the conservation of energy equation 

for the case of a moving shock wave, 

( ) ( ) 2
111111 ))((

2
1)( utUEtuUtuEtU ooo ∆+∆−=∆+∆ ρρσρ  (35) 

eliminating ∆t and rearranging so that the internal energy terms are on the same side, 
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( ) 2
111111 ))((

2
1)( uUuUEEuU ooo ρσρρ −=−− . (36) 

The second term on the left side of the equation can be simplified using the conservation 

of mass, and the second term on the right side can be simplified using the conservation of 

momentum, giving 

( ) 111111111 2
1)()( uuEuUEuU o σσρρ −=−−− .  (37) 

Simplifying the right side and dividing through by )( 11 uU −ρ  gives 

)(
2
1

11

11

1 uU

u
EE o −

=−
ρ

σ
.     (38) 

Solving the conservation of momentum equation for u1 and substituting into the above 

equation gives 
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Eliminating U and finding a common denominator on the bottom gives 

( )

o

o

oEE
ρρ

ρρσ

1

11

1
2
1

−
=− .    (40) 
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Simplifying one step further gives the commonly used conservation of energy equation 

for shock waves, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

1
11

11
2
1

ρρ
σ

o
oEE    .         (41) 

This equation shows that the change in energy between the two states is a function of the 

applied stress multiplied by the difference between the reciprocals of the density.  The 

conservation equations by themselves present an incomplete picture of the physical state 

around the shock wave.  Investigation of the three conservation equations shows that they 

contain a total of five unknowns, see Table 1. 

Table 1 – Conservation Equations 
Law    Equation    Unknowns  
 
Conservation        ρ, U, u 
of Mass  
 
 
Conservation        ρ, U, u, σ 
of Momentum  
 
 
Conservation        ρ, σ, E  
of Energy  
 
            
        Unknowns  U, u, E, σ, ρ 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

1
11

11
2
1

ρρ
σ

o
oEE

11 Uuoρσ =

)( 11 uUUo −= ρρ

 
 

Having five unknowns but only three equations to describe their interaction 

presents an obvious problem, which is solved through the use of a Hugoniot curve or an 

equation of state.  A Hugoniot curve is the locus of all attainable shock states that are 
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possible in a material, and is often presented in a form relating pressure and volume.  The 

Hugoniot curve is similar to a stress-strain curve in uniaxial stress, except it relates 

pressure and volume in a hydrostatic loading situation.   

A Hugoniot is different from a stress-strain curve in that it is not developed from 

one experiment that follows the loading path, as a stress-strain curve does.  Instead, a 

Hugoniot curve is developed using a large number of planar impact experiments to 

describe the relationship between the hydrostatic pressure and specific volume.   Since 

each point in a Hugoniot curve represents a separate experiment, a Hugoniot curve does 

not represent a loading path that is followed, but rather each point is an equilibrium point 

for a specific experiment.  A generic Hugoniot curve is seen in Figure 19.[7]   

 
Figure 19 – Hugoniot Curve Showing Loading Path and Unloading Path 

On this plot, the Hugoniot curve is marked with an H.  When an impact occurs 

with an initial velocity of vo, the loading path follows the line from point A where the 

material starts out with zero pressure but a high velocity, to point B along what is called 
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the Rayleigh line.  Thus, it is seen that the loading does not follow the Hugoniot, but 

rather occurs along a straight line connecting the initial state with the point along the 

Hugoniot curve relating to the peak pressure of impact, which is marked here as PH.   

Unloading in this case occurs isentropically along the line marked S, which is also not 

along the Hugoniot curve.[7]  

Since the Hugoniot curves are developed under uniaxial strain shock wave 

conditions, they are only valid in certain restricted situations, which leads to the use of 

equations of state, which are more general.[5]  In most computer codes that solve impact 

problems, an equation of state is used to relate internal energy, pressure, and volume.  An 

equation of state is developed using planar impact experiments, which can be used to 

develop the Hugoniot, and curve-fitting.  Examples of equations of state will be presented 

in a later section. 

As was mentioned, a shock wave is formed when higher velocity wavelets 

overtake slower velocity wavelets, which leads to an instantaneous change in the state of 

the material.  Because a shock wave requires waves of different velocity to exist in a 

material, it is impossible for an elastic shock wave to be formed, because the elastic 

sound speed of a material is constant.   

A shock wave might look similar to an elastic wave in that they each have a very 

definite wave front, but the difference is that in an elastic wave, the wave front is due to 

the impact, and never changes, while in a shock wave, the wave front develops over a 

short period of time, and can have a varying amplitude.[5] 
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2.3 Constitutive Equation  

 

The relationship between stress and strain in continuum mechanics codes is 

dictated by a constitutive equation.  In most finite element codes, stress is assumed to be 

quasi-static, which means that the loading is applied so slowly that there aren’t any 

dynamic loading effects.  In quasi-static cases, the most common constitutive equation 

used is the classic Hooke’s Law equation, 

),( mEf εσ =      (42) 

where σ is the stress, ε is the strain, and Em is the modulus of elasticity.  In many 

situations however, it is inappropriate to assume that stress is applied quasi-statically, 

because of this, Hooke’s Law will only be used in cases where the stress is below the 

yield stress of the material.  In cases where the applied stress is greater than the yield 

stress, it is necessary to account for dynamic loading effects.  The most common way to 

account for dynamics in a continuum mechanics problem is to include strain rate as a 

variable in the constitutive equation.  In general this becomes, 

⎟
⎠
⎞

⎜
⎝
⎛=

•

mEf ,,εεσ     (43) 

where  is the strain rate applied.  In some cases, constitutive equations will also be a 

function of internal energy and damage. [

•

ε

8] 
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CTH provides numerous constitutive equations with which stress-strain behavior 

can be modeled.  Most of these equations will be of little use in this impact study, 

because constitutive equations tend to be very problem specific.  Constitutive equations 

exist for metals, ceramics, concrete, and soil amongst others.  For this problem, only 

those equations dealing with metals are applicable. 

One of the most basic, yet still valuable, constitutive models available in CTH is 

the Johnson-Cook Strength Model.  This model presents the von Mises flow stress as  

)1()ln1)(( *m

TCBA p
n −++=

•

εεσ     (44) 

where σ is the von Mises flow stress, ε is the equivalent plastic strain,  is the plastic 

strain rate normalized by a strain rate of 1.0s

p

•

ε

-1, ∗T  is defined below, and A, B, C, m, and 

n are the Johnson-Cook coefficients for the given material.  The Johnson-Cook 

viscoplastic material model accounts for temperature via the homologous temperature, T* 

which is given as 

roommelt

room

TT
TTT
−

−
=∗

    (45) 

where T is the absolute temperature, Troom is the ambient temperature, and Tmelt, is the 

melting temperature of the material. [5] 

There are two minor disadvantages to the Johnson-Cook model.  The first is that it 

presents strain rate sensitivity as being independent of temperature, which in general is 

not the case.  However, by keeping strain, strain rate, and temperature uncoupled, it 
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becomes relatively straightforward to determine the Johnson-Cook coefficients from a 

few simple experiments at various temperatures and strain rates.  The second 

disadvantage of the Johnson-Cook model is that it is strictly a mathematical curve-fit of 

experimental data, and is therefore not built upon a base of physics. 

One constitutive model that overcomes the disadvantages of the Johnson-Cook 

model is the Zerilli-Armstrong model.  This model accounts for the interdependence of 

strain, strain rate, and temperature, and does it from a dislocation dynamics basis.  

Because it is based on dislocation dynamics, it takes different forms for different metal 

structures.  The face-centered-cubic form of the Zerilli-Armstrong model is 

   

•
⋅+−⋅+= εεσ ln

20
43 TCTCeCC    (46) 

where the Ci’s are the Zerilli-Armstrong coefficients, ε is the equivalent plastic strain,  

is the equivalent strain rate, and T is the absolute temperature.  The body-centered-cubic 

form is  

•

ε

   (47) 
nTCTC CeCC εσ ε

5
ln

10
43 +⋅+=

•
⋅+−

where n is a strain-hardening coefficient.  Simulations using the Zerilli-Armstrong and 

Johnson-Cook models show slightly better results for the Zerilli-Armstrong model when 

compared to experimental results; however neither model was especially effective for 

very large strains. [9] 
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A third constitutive model, which also utilizes dislocation dynamics, is the 

Steinberg-Guinan-Lund Model.  This model defines the dynamic yield stress, the shear 

modulus, and also the melting temperature.  The dynamic yield stress is given by 

( ) ( )
o

pApT G
TPGfYTYY ,, ⎥⎦

⎤
⎢⎣

⎡ +⎟
⎠
⎞

⎜
⎝
⎛=

•

εε    (48) 

where YT is the thermally activated component, YA is the yield stress at the Hugoniot 

elastic limit, εp is the plastic strain,  is the plastic strain rate, Gp

•

ε o is the initial shear 

modulus, and G(P,T) is the shear modulus, found using 
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−−+= 3001,

3
TBAPGTPG o η

)    (49) 

where A and B are material constants, P is the pressure, η is the density ratio of 
oρ

ρ , 

and T is the temperature in Kelvin.  The function ( )pf ε  is the work hardening function, 

which is found using 

( ) ( )[ ]i
p

pf εεβε ++= 1     (50) 

where β and εi are material constants.  Finally, the thermally activated component is a 

result of the plastic strain rate, 
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where YP is the Peierl’s stress, 2UK is the energy required to form two kinks in a 

dislocation segment, and C1 and C2 are material constants.   

Melting of material is modeled in the Steinberg-Guinan-Lund model as well.  In 

this model, the melting temperature for a given state is found via 

( )3
102112
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   (52) 

where Tm,o is the melting temperature at constant volume and  a and γο are material 

constants.  A table of the constants used in the specific problem studied are presented in 

Table 2.  The materials that were actually used in CTH are iron for 1080 steel and 

VascoMax 250 for VascoMax 300.  The yield stress and density for iron and VascoMax 

250 were changed to match the values of 1080 steel and VascoMax 300.[2] 
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Table 2 - Material Constants used in Constitutive Models 
Johnson-Cook Constants 
1080 Steel (modeled as iron)

Steinberg-Guinan-Lund Constants 
VascoMax 300 (modeled as VascoMax 250) 

Constant Value Constant Value 
A 1.7526 x 109 A 2.06 x 10-12

B 3.8019 x 109 B 3.15 x 10-4

C 0.06 ρο 8.129 
m 0.55 Go 7.18 x 1011

n 0.32 Yo 1.447 x 1010

Tm
1835.7 Ymax 2.5 x 1010

Tm,o 2310 
n 0.5 
a 1.2 
β 2.0 

 

γo 1.67 

 
 

2.4 Equation of State 

 

It is common when solving dynamic mechanics problems to break down stress 

and strain into two components, the hydrostatic or volumetric stress or strain and the 

deviatoric stress or strain, 

[ ] [ ] [ ]dh σσσ +=     (53) 

where [σ] is the stress tensor, [σh] is the hydrostatic stress tensor, and [σd] is the 

deviatoric stress tensor.  The hydrostatic stress is often called the volumetric stress 

because it is the stress that develops a volume change for a given parallelepiped of 
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material, while the deviatoric stress is associated with a shape change.  In impact 

problems, these two varieties of stress are handled via two separate relationships.  The 

first of these relationships, the deviatoric stress, was discussed in the previous section on 

constitutive equations.  The second relationship deals with the hydrostatic stress, and is 

called the equation of state.  The two are taken separately because it has been found that 

hydrostatic stress is virtually independent of strength and plasticity, while deviatoric 

stress is only slightly dependent upon pressure.[5]  Additionally, equations of state are 

needed to model how pressure, density, and energy relate when compressibility effects, 

and irreversible processes such as shock waves are included in the problem. [8]   

The equation of state of a material describes the relationship between pressure, 

specific volume, and internal energy, and can be shown in a general form by 

),( VPEE =      (54) 

where E is the internal energy, P is the pressure, and V is the specific volume.  An 

alternative form, often used in computer codes is, 

),( EPP ρ= .     (55) 

The Mie-Grüneisen equation of state is a simple equation of state that is very 

good for modeling high-pressure shock related events.[10]  The Mie-Grüneisen equation 

of state is based upon statistical mechanics, using the energy of individual atoms to arrive 

at thermodynamic equations.  The Hugoniot pressure is used as a baseline in the Mie-

Grüneisen equation of state and is given by, 
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3
3

2
21 µµµ CCCPH ++=     (56)  

where PH is the Hugoniot pressure, the Ci’s are constants, and µ  is  

1−=
oρ

ρµ .      (57) 

The C parameters in the equation for the Hugoniot pressure are only for a case where 

density increases.  If density decreases, C2 and C3 are zero.  The pressure is then 

calculated with 

( oH EEPP −Γ+⎟
⎠
⎞

⎜
⎝
⎛ Γ

−= ρµ
2

1 )    (58) 

where E is the internal energy per unit mass, Eo is the internal energy per unit mass at 

ambient conditions, and Γ is a constant called the Grüneisen parameter.  The Grüneisen 

parameter is assumed to be independent of temperature and only a function of specific 

volume, and is represented as 
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⎛

∂
∂

=Γ .     (59) 

Another equation of state often used is the Tillotson equation of state.  This 

equation also uses a quadratic approximation for pressure, and also has different versions 

for different density values.  When the density is greater than the ambient density and the 

internal energy is less than the sublimation energy, the pressure is given by 
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2µµπ BAPP ++=     (60) 

where A and B are material constants, and Pπ is, 
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where a and b are constants, and 
oρ

ρη = . 

When density is less than ambient and internal energy is greater than sublimation 

energy, the pressure is given by, 
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where α and β are constants.[2]  These are just two of the many different equations of 

state that are commonly used in solving impact problems, others exist for gases and 

explosives, and are available for use in CTH if needed. 

The equation of state used in this investigation isn’t actually an equation at all.  It 

is in fact simply a table that correlates pressure, energy, and density at various states.  In 

CTH, this equation of state is called the SESAME model.  Two major advantages of a 

tabular equation of state are that there is no need to calculate equation of state variables, 

as they are simply part of a table, and that by using a tabular equation of state the exact 
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physical state is used as opposed to an assumed state, i.e. a quadratic form as in the Mie-

Grüneisen and Tillotson equations of state.  This can be very important if the pressures 

applied are high enough that a material will change state from solid to liquid or liquid to 

gas. 

 

2.5 Artificial Viscosity 

 

In a continuum, it is assumed that physical properties within the continuum vary 

in a smooth manner, meaning that there are no instantaneous jumps in properties.  This is 

a requirement of continuum mechanics codes, which solve the conservation equations in 

differential form.  The problem that is encountered in high velocity impact problems is 

that at high velocities, a shock wave is formed.  Shock waves are in effect instantaneous 

jumps in pressure, density, and velocity, which make it impossible to solve the 

conservation equations across a finite mesh size.  This means that if a shock wave occurs 

within an element of a mesh, it may not even be observed.  The most common method of 

eliminating this problem is to spread the shock wave across a few elements, eliminating 

the discontinuity that causes problems for the differential equations. 

The method of spreading shocks across a number of cells used in most continuum 

mechanics codes, including CTH, is artificial viscosity.  Artificial viscosity was 

developed based upon viscosity used in fluid mechanics.  The one-dimensional 

conservation of momentum equation for fluid dynamics contains a viscous term,  
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 where µ is the viscosity of the fluid.  This led to the idea of adding a similar term to the 

pressure term in the conservation equations 

( )
x

qp
∂

+∂
     (64) 

where q is the artificial viscosity, which is of the same form as the viscosity used in fluid 

mechanics.  It was found that the best way to smear the shock, without affecting the 

solution away from the shock was to add a linear term and a quadratic term.  These two q 

terms were found to be, 
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where b1 and b2 are constants used to control how the shock is spread across zones.  An 

example of the use of artificial viscosity is seen in Figure 20.  The first graph shows a 

theoretical shock, dashed line, and the simulated behavior that would be seen without 

applying artificial viscosity to the problem. The second graph shows the same shock, 

except in this case, artificial viscosity is included.  It is obvious that artificial viscosity 

greatly decreases the oscillations that would be simulated.  By increasing the fineness of 

the mesh, it would be possible to improve the shock front even more, to more closely 

simulate a true shock wave. [8] 
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Figure 20 – Artificial Viscosity in a Shock Problem 
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Chapter 3 – Methodology 
 

3.1 CTH Solution Method 

 

CTH is a software system developed by Sandia National Laboratories in the late 

1980’s and early 1990’s, designed to “model multidimensional, multi-material, large 

deformation, strong shock wave physics” [11] problems.  CTH is a hydrocode computer 

program, which evolved from hydrodynamic codes, which treated materials as being 

fluid like, and therefore possessing no strength in tension or shear.  CTH however is an 

advanced hydrocode, which does have the capability of modeling strength in materials. 

CTH differs from other continuum mechanics codes in the solution scheme that it 

uses.  In general there are two different ways that a continuum can be described, the 

Lagrangian or material description and the Eulerian or spatial description.  The 

Lagrangian or material description of a continuum essentially takes the material to be 

acted upon and divides it up into smaller pieces and solves the conservation equations by 

following specific pieces of material.  The Eulerian or spatial description defines a 

volume in space and solves the conservation equations by tracking what goes through this 

volume. 

There are advantages and disadvantages for using either of these two meshing 

alternatives.  In a Lagrangian mesh, it is very easy to define boundaries and to calculate 

properties for a specific piece of material, but it is not a very good choice if one wishes to 

solve a problem where very large deformations occur.  Large deformations in a 
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Lagrangian mesh tend to deform the elements far too much to provide accurate answers.  

In an Eulerian mesh, large deformations are not a problem, since material is not tracked 

specifically, and therefore it can deform as much as needed, without causing numerical 

problems.  Eulerian meshes however, tend to make it more difficult to define material 

boundaries when mixing occurs, and provide no ready way to watch what happens to a 

specific piece of material. 

In problems involving high velocity impact, it is seen that neither a Lagrangian 

solution nor an Eulerian solution is ideal, because in general large deformations are 

exactly what is to be studied, yet it is still desired to see physical properties related to a 

specific piece of the material.  Ideally, the best properties of both Lagrangian and 

Eulerian solutions would be combined into one package to solve high velocity impact 

problems.  This is exactly what CTH has been designed to do. 

The method CTH uses to solve impact problems is known as a two-step Eulerian 

solution scheme.  The CTH solution starts with an Eulerian mesh, which during the first 

step is allowed to deform in a Lagrangian manner.  The second step takes the deformed 

mesh and maps it back to the original Eulerian mesh.  CTH provides for one-dimensional 

solutions, two-dimensional rectangular and cylindrical solutions, and three-dimensional 

rectangular solutions.   

The quantities to be calculated in a CTH solution, except for velocity, are all 

assumed to be constant across each individual cell, and centered within the cell.  The 

velocity of material is assumed to act on the cell face.  In order to solve the conservation 

of momentum equation, it is necessary to create a staggered cell structure, where the 
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edges of the staggered cell are located at the center of the original cell.  Since all 

quantities except for velocity are centered over the original mesh, these quantities are all 

considered to be based in time on the whole time step, while velocity is based on a half 

time step, because it is spatially on a staggered cell.  An example of the location of the 

cell quantities and a depiction of the staggered cell structure are seen in Figure 21. [11] 

 

Figure 21 – CTH Cell Structure 

As was mentioned earlier, CTH utilizes a two-step solution scheme.  The first step 

integrates the conservation equations, which are presented as a finite volume 

approximation across the time step.  The integration of the conservation equations is done 

explicitly, which is simpler than implicitly, but requires a smaller time step, to ensure 

stability.  The user does not control the time step that CTH utilizes directly, since it is 

calculated to ensure that a wave will not skip a cell during one time step. Since this step 

is a Lagrangian step, with the mesh attached to specific pieces of material, it is easy to 

see that there is no mass that moves out of the mesh, and therefore for the first step, the 

conservation of mass equation is satisfied automatically.  [11] 

The remap step utilized by CTH returns the deformed mesh to its original state, 

and calculates the amount of volume, mass, momentum, and energy that must be moved 

into each cell.  Volume flux between neighboring cells is calculated, and a high-
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resolution interface tracking subroutine is used to determine which material moves.  The 

next step calculates how much mass and internal energy moves into the cells.  Lastly, 

momentum and kinetic energy are moved, because these two are dependent upon the 

mass.  [11] 

In the vast majority of the structure, the remap step will likely be rather simple, 

because only one material is in a given area, and therefore it isn’t necessary to determine 

how much of which material moves where.  However in areas where there are multiple 

materials, the remap step takes on added difficulties, because it is necessary to keep track 

of multiple individual bits of material, which in fact might be only a very small amount 

of material.  [11] 

In the case where multiple materials are present in a cell, the two-dimensional 

solution approximates the material boundaries as straight lines.  The volume fraction of 

each corner is found by averaging the volume fractions of the four cells surrounding the 

corner point.  The values between these corner values are assumed to vary linearly, and 

can be interpolated easily.  The equivalent volume fractions on adjacent sides are 

connected via a straight line, see Figure 22.  For each case of corresponding volume 

fractions, i.e. 0.5 and 0.5, the volume below the diagonal line is calculated.  This 

calculated value is compared to the cell volume fraction, and if they are not equal, a 

different pair of volume fractions is used, until the calculated value and the cell value are 

equal.  In Figure 22, the volume flux calculated earlier is drawn as the volume to the right 

of the dashed line.  Using these two lines, the material to be fluxed to the right is the 
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volume of material to the right of the dashed line and below the diagonal line.  This is 

repeated for all four sides and for each material present in a cell. [11] 

 
Figure 22 – Material Flux Between Cells 

A difficulty arises when CTH attempts to conserve mass, momentum, and kinetic 

energy during the remap step.  The problem is that CTH is trying to conserve three 

quantities, while only using two variables to do it.  CTH provides three different methods 

to handle this problem.  The first method chooses to conserve momentum, but to change 

kinetic energy into internal energy.  As can be imagined, this case could cause unrealistic 

temperature increases in the cell, if the kinetic energy is high.  The second method is the 

reverse of the first, conserving kinetic energy, but not momentum.  This method does not 

give satisfactory answers.  The final method for conserving mass, momentum, and kinetic 

energy is the same as the first method, except in the case when the receiving cell has 

momentum of a different sign than the donating cell.  In this special case, the kinetic 

energy is added to the internal energy of the receiving cell.[12] 

Since multiple materials are capable of occupying a given cell, it is necessary to 

understand how pressure and temperatures are handled within the cell for each of these 

materials.  CTH has the capability of having multiple temperatures and pressures within a 

given cell.  The first option, allows each material to have separate temperatures and 
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pressures, but does not allow pressure relaxation, which causes problems with the 

conservation equations.  This option distributes volume and energy based upon the 

material volume fractions within each cell, and can cause problems when materials have 

compressibility mismatches.  The second option is similar to the first in its treatment of 

mixed cells, however it distributes volume and energy based upon the volume fraction 

cubed divided by the material mass.  This option seems to provide better results than the 

first option in most cases.  The third option allocates work done in cells based upon 

compressibility of the given materials, and allows pressure relaxation.  This option gives 

better results than either the first or second option, but the algorithm is less robust.  The 

last option allocates work done based upon volume fraction, but does so in a way that 

prevents materials with very low volume fractions from changing volume.  This option 

also allows pressure relaxation.  [12] 

One last issue for mixed cells needs to be discussed, that is how to calculate the 

yield strength in a cell of mixed materials.  The first option uses the volume fraction 

averaged yield strength.  The second option is the volume averaged yield strength 

normalized by the sum of the volume fractions of materials that support a shear loading.  

The last option is that the strength in a cell of mixed materials is zero unless the cell 

contains a material and a void; in which case, a volume averaged yield strength is 

used.[12] 

One defining characteristic of CTH when compared to a typical hydrocode is that 

CTH models the ability of materials to support a deviatoric, or shearing, stress.  In 

hypervelocity gouging problems, one of the main deformation causing processes is 
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believed to be the sliding of the slipper along the rail.  CTH provides two options to 

model a sliding interface between two materials. 

The first option was developed to model penetration events, and is characterized 

by the movement of the sliding process into what is deemed the “soft” material, away 

from the interface of the materials, which improves numerical results.  Moving the 

sliding interface, allows the development of deviatoric stress at the interface.  This 

algorithm unfortunately is not supported for all geometries, and is unable to be utilized in 

a parallel computing environment, which therefore makes it inconvenient to use in many 

situations that aren’t axisymmetric, or that are very computationally intensive, since it 

must be used on a single processor.[12] 

The alternative algorithm takes a different approach to handling a sliding interface 

than the other algorithm does.  Instead of moving the sliding interface away from the 

material interface as the previous algorithm does, this algorithm sets the deviatoric stress 

at the material boundary to zero.  This option effectively turns the projectile’s surface 

into a liquid, since it is unable to support any frictional forces.[12] 
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3.2 Buckingham Pi Theorem 

 

In his work on the gouging problem for the HHSTT, Szmerekovsky utilized the 

Buckingham Pi theorem to scale his model appropriately so that he represented the actual 

physical problem as accurately as possible, but on a smaller scale.  This scaling was 

necessary to keep the simulation computationally efficient.   

The Buckingham Pi theorem is a method of dimensionally analyzing a problem, 

that allows models to be scaled, yet still be consistent with some physical problem.  The 

Buckingham Pi Theorem is a method, by which a physical problem can be broken down 

into a set of invariant products that must be satisfied for a system to remain consistent.  

The Buckingham Pi Theorem states that if a physical system consists of a number of 

dimensioned quantities {qi}m that are each products of a set of j independent fundamental 

dimensions Lj, then the physical law can be described by 

( ) 0,....,,, 321 =mqqqqf     (66) 

where m is the number of dimensioned quantities which are to be used in the 

Buckingham Pi analysis.[13] 

A fundamental dimension is a quantity that is used to describe a dimensioned 

quantity.  Szmerekovsky utilized mass, length, time, and temperature as the four 

fundamental dimensions in his analysis and represented them by M, L, T, and θ 

respectively. Using these four fundamental dimensions, it is possible to describe most 

physical quantities, such as velocity, which is 
T
L  or force 2T

ML .  It is not necessary to use 
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these four fundamental dimensions; it is only necessary to ensure that the fundamental 

dimensions alone can describe all dimensioned quantities.  For example one could use 

velocity 
T
L  and time T if one wishes.  This might be useful in a case where a length 

might not be easily measurable, but the velocity and time can be observed easily.[2] 

As was just mentioned for the case of velocity and force, it is possible to represent 

any dimensioned quantity as a product of fundamental quantities raised to some power, 

[ ]id
n

dd
i

nLLLq ⋅⋅⋅= 21
21      (67) 

where qi is the dimensioned quantity, Lj is the fundamental dimension, and dk is the 

power the fundamental dimension is raised to.  In the case of force this leads to, 
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This process is repeated for all of the dimensioned quantities that are to be scaled.  

These dimensioned quantities are then combined to form the invariant Pi quantities, in the 

following manner 

( ) ( ) ( ) m
mqqq ααα ⋅⋅⋅=Π 21

21    (69) 
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where the αi’s are an exponent that is to be determined.  Utilizing the equation describing 

the dimensioned quantities in terms of the fundamental dimensions gives, 

( ) ( ) ( ) m
d

n
ddd

n
ddd

n
dd mnnn LLLLLLLLL

ααα
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=Π 21221121

21221121 . (70) 

This equation is rearranged so that all of the L1 quantities are together and so on.  This 

can be simplified by combining the powers of the fundamental dimensions, giving 

( ) ( ) ( ) n
nLLL βββ ⋅⋅⋅=Π 21

21     (71) 

where the exponents β can be described as 
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Since this system must be applicable for any physical law, a function of the Pi 

invariants must be invariant.  This in turn requires that the exponents β be equal to zero, 

otherwise when a fundamental dimension changed, the Pi invariant would change.  By 

solving the above equation, it is possible to determine which products of dimensioned 

quantities must be maintained invariant.  An example follows which will show how to 

perform a Buckingham Pi analysis on the problem of a cylindrical projectile impacting a 

flat plate at an angle, see Figure 23. 
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Figure 23 – Rod Impact Example 

The dimensioned quantities to be utilized follow from Szmerekovsky’s work, and 

are shown in Table 3.  Additionally, the description of these quantities in their 

fundamental dimensions is provided. 

Table 3 - Buckingham Pi Example 
Dimensioned Quantity Symbol Fundamental Dimensions 

density ρ ML-3

diameter d L 

length l L 

velocity v LT-1

material speed of sound c LT-1

internal energy E ML2T-2

energy source S ML2T-2

yield strength in compression σy,c ML-1T-2

elastic modulus Em ML-1T-2

shear modulus Go ML-1T-2

time t T 
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These quantities are then raised to a power α and multiplied together to form the 

invariant Π.   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1110987654321
,

ααααααααααα σρ tGESEcvld omcy=Π    (73) 

which when combined with the fundamental dimensions from Table 3, gives 
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This can be simplified to  
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Setting the values of β to zero and solving for α1, α2, and α4 gives 

.33
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This set of equations allows the definition of the invariants.  Rewriting these equations in 

vector form gives 
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Each of these columns represents a separate invariant that must be met.  The invariant is 

found by associating each dimensioned quantity with its corresponding α value and 

raising the dimensioned quantity to the power seen in the column vector.  In this case, the 

invariants are given by 
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Since this must be invariant regardless of the arbitrary values of C, the separate invariants 

are found by setting one C to one and the others to zero, which gives the invariants as. 
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This process has now given a set of physical invariants that must be satisfied in every 

case to ensure that a scaled model of a cylindrical impact is equivalent to the initial 

model.  The last invariant, 
d
tv

=8π , is used in comparing two different scaled models.  

By solving this invariant for the time, it is possible to determine which time step in model 

one is equivalent to which time step in model 2. 

 

3.3 Model Scaling 

 

A typical test sled at the Holloman High Speed Test Track consists of a rocket 

attached to a test sled, which in turn is attached to the narrow gauge rail via either four or 
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six shoes, as was seen in Figure 1 and Figure 2.  An entire sled system may weigh as 

much as 809 kg.  The shoes that connect the sled to the rails are generally 20.32 cm long, 

by 10.8 cm wide, by 2.54 cm high.  The Szmerekovsky model uses a full size shoe, and 

models the mass of the sled as being evenly distributed across four shoes.  Because CTH 

is an Eulerian model, and not a Lagrangian model, it is not possible to add the mass as a 

point mass at a node.  This led to the addition of an artificial sled mass on top of the shoe 

to represent the quarter mass of the sled.  The last step in developing the Szmerekovsky 

model involved taking a unit width slice, to represent a plane strain model.  The flow 

chart showing how he simplified the system is seen in Figure 24.[2] 

 

Figure 24 – Sled Mass Simplification 

To mitigate gouging, it is desirable to know exactly what the conditions are at the 

moment a gouge forms.  Ideally, the best way to perform this would be to record 

conditions as a gouge occurs, on the actual test track.  The problem with doing this is that 
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high velocity impact experiments on the HHSTT are very expensive to perform in terms 

of cost, time, and logistics.  In addition to these difficulties, it is not currently possible to 

determine exactly where a gouge will develop, and therefore it would not be necessary to 

instrument the whole track and record the conditions that occur during a gouging event, 

which is not a viable option.  Due to these facts, it is not feasible to study the gouging 

phenomena using the actual test track.  Therefore, it is desirable to study the phenomena 

either numerically, or using an equivalent experiment which approximates the conditions 

seen in the field.  Laird and Szmerekovsky have developed a numerical model that scales 

the physical problem down to a level that it can be simulated using a reasonable cluster of 

Linux computers. [1,2]  

The Szmerekovsky model did an excellent job of simulating a gouging event, and 

provided excellent insight into the formation of a gouge on a realistic model.  Gouges 

modeled using this model were found to be similar in shape and size to those seen at the 

HHSTT.  The problem faced by Szmerekovsky however was that the physical gouges 

seen at the HHSTT were not accompanied by any description of the conditions under 

which the gouge formed.  Without information on the conditions of the impact, it was 

impossible to know whether the impact modeled was similar to the impact that caused the 

physical gouge seen in the rail at Holloman. 

This research attempts to develop a simplified gouging model that is equivalent to 

the Szmerekovsky model, and therefore the physical test sled, yet is simple enough to 

verify using an oblique ballistic impact experiment.  Most high velocity impact 

experiments are performed using a compressed gas gun that shoots either a long 
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cylindrical rod projectile, or a spherical projectile.  As will be seen shortly, it is important 

to match diameter to length ratios of models.  Since the Szmerekovsky model utilizes a 

rectangular slipper with an aspect ration of 1/8, a spherical projectile is not possible, and 

a rectangular impact rod must be used.  It was further decided that simply using a right 

circular cylinder would introduce too great of a discontinuity when the 90 degree corner 

of the cylinder struck the impact plate.  Because of this, it was decided to use a spherical 

tip on the impacting end of the rod. 

Szmerekovsky’s work presented a number of different impact models used to 

represent the formation of a gouge.  Models were developed for an oblique impact, for a 

horizontal impact with a circular asperity on the rail, and for the case of an impact with 

an elliptical “rail roughness”, as may be seen on the test track.  Additional cases were 

also investigated using an epoxy coating, which is similar to the coating used on the rails 

at the HHSTT.  Since this investigation was to develop a model that could be 

experimentally verified, it was determined that both an asperity impact and a rail 

roughness impact were too difficult to perform in a controlled manner in a laboratory.  

Additionally, it was decided to investigate only the case of an uncoated rail. 

A Buckingham Pi analysis was performed based upon Szmerekovsky’s sled 

system mass model.  This model consisted of a full sized slipper with an artificial mass 

added on top to simulate the mass of the sled, and was compared with a long rod impact 

specimen capable of being launched by a typical compressed gas gun. Szmerekovsky’s 

model and the model developed here are seen in Figure 25.[2]   
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Figure 25 – Impact Model Comparison 

The analysis was based upon Szmerekovsky’s conservation equation case.  The 

dimensioned quantities used are given in Table 4.  From this it is seen that the 

fundamental dimensions are mass M, length L, and time T.   

The invariant parameter Π is found to be, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 13121110987654321
,

ααααααααααααα σ tGESEcuuwdlm omcyyx=Π (80) 

which when combined with the fundamental dimensions from Table 4, gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 131211109

87654321

21212122

22111

ααααα

αααααααα

TTMLTMLTMLTML

TMLLTLTLTLLLM
−−−−−−−

−−−−=Π
. (81) 
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Table 4 - Buckingham Pi Dimensioned Quantities for Rod Impact Model 
Dimensioned Quantity Symbol Fundamental 

Dimensions 

Szmerekovsky Rod Impact 
Model Szmerekovsky 

Rod 
Impact 
Model 

 

height of 
slipper diameter of rod h d L 

length of 
slipper length of rod l l L 

 horizontal 
velocity 

 horizontal 
velocity ux ux LT-1

vertical 
velocity 

vertical 
velocity uy uy LT-1

material speed 
of sound 

material speed 
of sound c c LT-1

internal energy internal energy E E ML2T-2

energy source energy source S S ML2T-2

yield strength 
in compression 

yield strength 
in compression σy,c σy,c ML-1T-2

elastic 
modulus elastic modulus Em Em ML-1T-2

shear modulus shear modulus Go Go ML-1T-2

time time t t T 
 

This can be simplified to  

( ) ( ) ( )

.22222
,22

,
where,

13121110987653

121110987654322

1211109811

321

αααααααααβ
αααααααααααβ

ααααααβ

βββ

+−−−−−−−−=
−−−+++++++=

+++++=

=Π TLM

 (82) 

Setting the values of β to zero and solving for α1, α2, and α5 gives 
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.333
,22222

,

13121110432

1312111098765

121110981

ααααααα
ααααααααα

αααααα

−+++−−=
+−−−−−−−=

−−−−−=
   (83) 

This set of equations allows the definition of the invariants.  Rewriting these equations in 

vector form gives 
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Each of these columns represents a separate invariant that must be met.  The invariant is 

found by associating each dimensioned quantity with its corresponding α value and 

raising the dimensioned quantity to the power seen in the column vector.  In this case, the 

invariants are given by 
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Since this must be invariant regardless of the arbitrary values of C, the separate invariants 

are found by setting one C to one and the others to zero, which gives the invariants as. 
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To maintain proper scaling these invariant Pi parameters must be matched in both 

the Szmerekovsky model and the rod impact model.  The values of the dimensioned 

quantities as originally used in the Szmerekovsky model are shown in Table 5. 

63 



 

Table 5 - Szmerekovsky’s Dimensioned Quantities 
mass 19.1 kg 

length 20.32 cm 
height 2.54 cm 
width 10.8 cm 

horizontal velocity 3000 m/s 
vertical velocity -2 m/s 

material speed of sound 4737 m/s 
internal energy 930 Mega Joules 
energy source 0 Mega Joules 

yield stress in compression 14.47 GPa 
elastic modulus 1824 GPa 
shear modulus 718 GPa 

 

Analysis was performed using a two-dimensional plane strain solution, which called for 

the use of a unit width of the slipper.  Since a unit width was used, the total mass of the 

system was divided by the width of the slipper.  The total mass is found by adding one 

quarter of the mass of the sled to the mass of the slipper, which is found by calculating 

the volume of the slipper and multiplying by the density of VascoMax 300, which is 

8.129 g/cm3.  The material speed of sound is calculated from the equation presented in 

Chapter 2, 
ρ

mE
c = .  Prior to the impact, the internal energy of the system is entirely in 

the kinetic energy of the projectile, which is 2

2
1 mv .  There is no internal energy source 

within the projectile, so therefore S is zero. 

The values calculated for the Pi parameters from the Szmerekovsky model are, 
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The model to be investigated must now be developed.  In order to most closely 

meet the goals of studying the gouging phenomena, it was desirable to use the actual 

materials whenever possible.  Because of this, it was assumed that the projectile was 

made of VascoMax 300 steel with the same properties as in the Szmerekovsky model.  

This constrained the yield strength, elastic modulus, and shear modulus, as well as the 

density, even though this is not used directly in the Buckingham Pi process.  With the 

material properties set, it was left to determine the dimensions of the projectile and the 

velocity of impact.  Since the original materials are used, the sound speed is constant 

between the two models, while the horizontal velocity is varied.  Because of this, it is 

necessary to allow π4 to vary between the two models. 

Most impact projectiles used are fairly small, because the larger the projectile, the 

greater the amount of energy that is needed to accelerate it to speed.  In general, most 

projectiles are between 5 and 10 mm in diameter.  Because of this, the diameter of the rod 

was initially chosen to be 6 mm.  Starting from this diameter, and using Π1 from 

Szmerekovsky’s model gives a rod length of 48 mm.  The volume of the model of the 
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rod, which is also a plane strain model with a unit width, was found by adding a 

rectangular rod and a half circle for a tip, and multiplying by a unit width, 

1
22

1 2

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⋅=

dldvolume π .   (88) 

Using the volume and the density, the mass was calculated, which left the velocity to be 

determined. 

The velocity was determined using a scaling factor.  To begin, an initial guess of 

1000 m/s was chosen for the horizontal velocity ux.  From this initial guess of velocity, 

the invariant Π8 was calculated using 

( ) 2

3

8
x

mGUESS uvolume
lE

⋅
=Π

ρ
    (89) 

where the term in parentheses is the mass of the rod.  This result was then compared to 

the original Π8 as calculated from Szmerekovsky’s model, and a ratio was developed that 

was the scaling factor, 

8

8

Π

Π
= GUESSscale .      (90) 

This scaling factor is utilized along with the definition of Π8 to determine the actual 

horizontal velocity of the projectile. 
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Because both Pi parameters are based upon the same model, with different velocities, it is 

possible to simplify this equation and solve for ux,ACTUAL which gives the horizontal 

velocity that must be used, 

GUESSxACTUALx uscaleu ,, ⋅= .   (92)  

Determination of the horizontal velocity allows the calculation of the rest of the Pi 

parameters, which are given in Table 6, and compared to those of Szmerekovsky’s 

model.  Additionally, Pi parameters are given for both the Szmerekovsky model and the 

rod impact model for Szmerekovsky’s case of a horizontal velocity of 1500 m/s and 

vertical velocity of 1 m/s. 

Table 6 - Pi Parameters for Szmerekovsky Model and Rod Model 
 ux=3000 m/s 

uy=-2 m/s 
ux=1500 m/s 

uy=-1 m/s 
 Szmerekovsky Rod Model Szmerekovsky Rod Model 

ux 3000 m/s 9617 m/s 1500 m/s 4808.5 m/s 
uy -2 m/s -6.41 m/s -1 m/s -3.21 m/s 
Π1 0.125 0.125 0.125 0.125 
Π3 -6.667x10-4 -6.667x10-4 -6.667x10-4 -6.667x10-4

Π4 1.579 0.493 3.158 0.985 
Π5 0.5000 0.5000 0.5000 0.5000 
Π6 0 0 0 0 
Π7 0.07045 0.07045 0.282 0.282 
Π8 8.88 8.88 35.519 35.519 
Π9 3.496 3.496 13.984 13.984 
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In order to keep materials constant between the two models, it was necessary to allow the 

invariant relating material sound speed and horizontal velocity to be non-constant.  Any 

attempt to perfectly constrain all invariants would have resulted in a change of material 

properties that would have been impossible to duplicate in the field. 

 
 
 

Chapter 4 – Analysis and Results 
 
 
 

4.1 Verification of CTH Model Parameters 

 

Prior to embarking on an effort to model an oblique impact, it was necessary to 

determine the proper parameters to use in CTH.  To do this, a model was developed 

based upon the Taylor cylinder test.  The Taylor cylinder test involves striking a rigid 

anvil at a right angle with a right circular cylinder, as was seen in Figure 7.  This test is 

generally used to determine the dynamic yield stress, [10] however in this case, the 

pictures obtained from the work of Jones, et al., [14] are compared to the final deformed 

specimen as simulated using a Taylor cylinder test model built for CTH.  

The model built for CTH was based upon the experiment performed by Jones, et 

al.  In their experiment, Jones used an Oxygen Free High Conductivity (OFHC) copper 

impact cylinder with a diameter of 7.62 mm and a length of 57.15 mm.  This cylinder was 

fired at a velocity of 176 m/s against a 4340 steel anvil.  Fortunately, the materials library 

in CTH contains the equation of state and the constitutive equation for both copper and 

4340 steel; therefore these materials could be modeled perfectly in the simulation. [14]   
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The boundary condition for the edge of the mesh that was used was the 

hydrodynamic boundary condition.  Under this condition, when a stress wave reaches a 

mesh boundary, it is imagined to continue unimpeded as if the material extended 

infinitely.  The only instance where stress waves reflect is when there is a change in 

materials, such as at the material interface between the rod and plate, or along the sides of 

the rod where the rod material ends and a void is encountered.  The mesh used in the 

Taylor test simulation was 0.025 cm square in the region of impact, and throughout the 

rod.  In the area away from the impact, a mesh of 0.100 cm was used.  A diagram of the 

mesh is presented in Figure 26.  Only half of the Taylor test needs to be modeled, 

because it can be represented axisymetrically, and the other half of the model can be 

added using a mirror option.  The target was chosen as a 20 cm thick piece of 1080 steel. 

This is much more than is needed, since the boundary conditions were essentially semi-

infinite, and therefore the stress wave would not be reflected no matter how long the 

simulation was carried out. 
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Figure 26 – Taylor Test Grid 

It was left to be determined which user controllable options within CTH should be 

utilized.  The major options within CTH which can be changed, and may change results, 

are the method for determining yield strength in mixed cells, the handling of multiple 

materials and pressures, whether voids within the specimen should be given any strength, 

and which material interface algorithm should be used, the algorithm that moves the 

sliding away from the material interface, or the algorithm that sets the deviatoric stress to 

zero. 

A baseline model was developed using the following options, which will be 

briefly described: 

• Yield strength in mixed cells – The yield strength in a cell containing 

multiple materials is the volume averaged yield strength of all materials in 
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the cell normalized by the sum of the volume fractions of materials that 

support shear. 

• Material volume fractions and pressures in mixed cells –Multiple 

materials in a given cell can each have their own temperature and 

pressure, however there is no means of relaxing the pressure within the 

cell. 

• Void strength – With this option, when a void is developed in a material 

due to local fracture, the void is compressed closed as if it has no strength. 

• Interface layer – This option creates a pair of boundary layers at the 

material interface, one hard and one soft.  In essence, the sliding that 

would occur at the interface of the two materials is moved into the soft 

boundary layer, effectively moving the sliding interface of the two 

materials into the “soft” material. 

There are additional options that could have been investigated, however it was thought 

that those additional options were well enough understood to choose correctly without 

investigation. 

The CTH code was used to simulate the Taylor Test performed by Jones.[14]  The 

final deformed shape calculated by CTH was compared to the deformed shape as 

photographed.  Figure 27 shows that the baseline CTH simulation at least approximately 

simulates the experimental results near the impacted end.  Using the baseline model as a 

starting point, each of the four input parameters that could be controlled were changed 

one at a time to determine which options to use.   
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(a)             (b) 

Figure 27 – Taylor Test Specimen – (a) Experimental (b) CTH baseline 

 

The first option that was adjusted was the calculation of the yield strength in 

mixed cells.  Initially, the yield strength was calculated based upon the volume averaged 

yield strength, normalized by the sum of the volume fractions that can support shear.  The 

other option investigated sets the strength in mixed cells to zero, except if a cell contains 

one material and a void.  It would be suspected that this might give unrealistically weak 

material response near the interface where mixing was expected.  The CTH simulation 

showed that this appeared to be the case, as even at the low speeds of this simulation, 

particles of material were ejected from the specimen, as can be seen in Figure 28.  This 

option did not improve the model and is not used further.  

72 



 

 
Figure 28 – Taylor CTH Simulation – Yield Strength 

The manner in which CTH calculates pressure in cells of mixed materials was 

also investigated.  The baseline model allowed materials to have independent pressures 

within a mixed cell, however it doesn’t allow pressure relaxation.  The most sophisticated 

of the multiple material and pressure models allows multiple materials and pressures in 

mixed cells, proportional to the material volume fraction, however it does not allow 

volume change for materials with small volume fractions.  This allows pressure to relax 

to equilibrium values.  Since this is a more sophisticated model, it was expected that 

results would be as good or better than the baseline model.  Figure 29 presents the 

deformed shape of the Taylor specimen using the new option.  Qualitative observation 

shows that this model is superior to the previous model, because it seems to allow the 

material farthest from the rod’s axis to flow more freely as it appears to do in the 
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experimental test.  This flow of material results in a sharper edge on the mushroomed 

head than appears in the baseline model, which appears to be slightly blunted. 

 
Figure 29 – Taylor CTH Simulation –Multiple Materials and Pressures 

The baseline CTH model allowed voids that form within the specimen to be 

compressed from the specimen before the surrounding material was compressed.  An 

option exists which in effect gives the void within the material a strength, because it 

compresses voids and material according to their volume fractions.  This requires energy 

to deform the material, which might otherwise be used in closing voids.  Results for this 

option also ejected material from the projectile, as seen in Figure 30.  Due to this fact, 

voids will be allowed to close as in the baseline model. 
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Figure 30 – Taylor CTH Simulation – Void Strength 

The last option investigated was the manner in which the boundary between the 

two materials was simulated.  The baseline CTH model utilized the algorithm that 

effectively moves the sliding interface into the softer material.  The other option 

investigated sets the shear force at the interface to zero.  The second algorithm appears to 

give good results as well, as can be seen in Figure 31. 
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Figure 31 – Taylor CTH Simulation – Interface Layer 

The appropriate options to use for a Taylor Test simulation were just shown to be 

allowing multiple materials and pressures in a cell, with pressure relaxation, and also to 

set the shear stress at the boundary to zero.  These two changes were made to the baseline 

model, and an additional CTH simulation was performed.  This model was compared to 

the Jones experiment through the use of tracer points in the CTH simulation.  Tracer 

points are Lagrangian points within the mesh that are followed throughout deformation, 

allowing the material history of a specific point to be followed.  For the simulation, sixty 

tracer points were placed on the free edge of the cylinder, along the axis.  After 

deformation, the positions of these points were graphed, presenting the exact deformation 

of the rod.  This deformed shape was compared to the measured profile, as presented in 

the paper by Jones et al.[10]  The deformed shapes of the experimental and numerical 

methods are presented in Figure 32.  For simplicity, only one half of the rod is shown, 
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and the scales for radius and length are not the same, which is why the rod appears 

squatter than in the picture presented earlier.  The deformed shape seen in Figure 32, 

shows that the use of multiple materials and pressure algorithm and interface algorithm 

previously described, is justified, because the simulated shape is very similar to the actual 

deformed shape recovered from an experimental setup.  The axial position where both 

tests begin to mushroom appears to be approximately 25 mm from the impacted end.  The 

lip seen in the experimental test at around 3 mm from the impacted end is simulated 

nearly exactly in the CTH simulation.  Pictures of the experimental impact specimen and 

the CTH simulated specimen are seen in Figure 33.   

The two major areas where the two experiments differ are at the two ends.  The 

CTH model over estimates the total amount of axial deformation by approximately 1.3 

mm, which is only 3% of the length of the deformed specimen.  The other are where the 

two tests differ is at the impacted end, where the CTH model underestimates the 

deformation by approximately 1 mm.  This difference can be explained by the fact that 

the interface algorithm does not permit any friction at the interface.  This would seem to 

cause the CTH model to overestimate the deformation, however since there is no friction 

in this region, any temperature change is due solely to plastic deformation.  Since there is 

no deviatoric stress immediately at the interface, the temperature rise is due solely to 

plastic deformation, and will likely be much lower than in experiments.  The lower 

temperature will result in less plastic flow, because the yield stress won’t decrease as 

much in the constitutive equation, and therefore the yield stress won’t be reached as 
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early, and less plastic flow will occur.  With less plastic flow occurring, the diameter of 

the impacted end will tend to be smaller than in the experimental case. 
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Figure 32 – Taylor Test – CTH Model Versus Experimental Results 

Qualitative evaluation of the CTH model presented over the previous few pages 

shows that CTH generates a deformed Taylor Test specimen that is very similar to an 

experimental Taylor Test specimen.  It was left to determine if CTH was quantitatively 

accurate as well.  The theory discussed in Section 2.2 describes some of the behaviors 

that should be witnessed using the CTH simulation. 
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(a)     (b)  

Figure 33 – Deformed Taylor Test (a) Experiment (b) CTH 

 

The one-dimensional theory of stress in a long rod subjected to an impact, is an 

approximate theory that states that after impact, a one-dimensional stress wave is formed 

that travels at constant speed equal to 
ρ

mEc = where Em is the elastic modulus of the 

material with density ρ.  The stress state behind the wave is one of uniaxial compression 

where the stress is constant and equal to ocvρσ = where vo is the impact velocity.  These 

theories were checked utilizing a Taylor Test impact of high strength VascoMax 300 

steel on 1080 steel, at a velocity of 176 m/s.  The stress profile at 0.5 µs is seen in Figure 

34.  This picture shows the formation of the one-dimensional stress wave predicted by 

theory.  Elementary one-dimensional impact theory predicts that the compressive stress 

will be 770 MPa behind the stress wave.  Figure 34 shows that the stress wave is 

approximately 700 MPa.   
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Figure 34 – Stress Wave at 0.5 µs 

The stress wave is assumed to travel at a constant speed of 4,930 m/s through the 

steel rod, which is 6.0 cm long, which means that it should take 12.4 µs to travel the 

length of the rod.  The rod is shown at 12.5 µs in Figure 35.  If the stress wave is assumed 

to reach the end of the rod shortly after it is seen in this figure, it can be assumed that it 

took approximately 12.5 µs to traverse the rod, which is as expected.  It is difficult to 

exactly determine when the stress wave reaches the end of the rod due to the time step 

utilized, and the fairly coarse discretization of the rod far from the impacted end.  The 

reason that the stress farther from the wave front is greater than 700 MPa is that in the 

theory of long rod impact, it is assumed that the stress doesn’t interact with the sides of 

the rod, when in fact the stress will reflect from the sides, changing the stress state from 

one of strictly one-dimension to a state of three-dimensional stress. 
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Figure 35 – Stress Wave at 12.5 µs 

The last piece of theory discussed in regards to stress wave propagation in long 

rods is that a stress wave reflects with the opposite sign, effectively zeroing the stress 

behind the reflected stress wave.  This zeroing of stress can clearly be seen in Figure 36, 

where the white stress contours at the top of the rod are approximately zero stress, behind 

the stress wave, which is moving down. 
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Figure 36 – Stress Wave at 17.5 µs 

 

4.2 Oblique Rod Impact Model 1500 m/s and 3000 m/s 

 

The oblique rod impact model described in Section 3.3 was utilized in simulations 

of a 3000 m/s horizontal by 2 m/s vertical sled run and a 1500 m/s horizontal by 1 m/s 

vertical sled run.  The two velocities were used to match the test cases that Szmerekovsky 

used, which were chosen because in general the HHSTT begins to see gouging around 

1500 m/s, and it is desired to eventually perform tests at the HHSTT at speeds of 3000 

m/s.[2]  Simulations were performed on a cluster of 64-bit Linux computers, using either 

ten or twelve processors.  On average, the simulations took 40 minutes to perform. 
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The boundary condition used in the rod impact model was the hydrodynamic 

boundary condition.  This boundary condition treats mesh boundaries as being semi-

infinite, and therefore a stress wave that reaches a boundary continues on its present 

vector, without reflecting.  Material boundaries are treated realistically, and waves reflect 

as dictated in theory.  In the area of the impact, the mesh was 0.0050 cm square.  Farther 

from the impact zone, the mesh is coarser.  The number of cells in the target was 95,200, 

and in the rod there were 28,110 cells.  The mesh is shown schematically in Figure 37, 

the rod is shaded dark gray, and the picture is not to scale. 

 
Figure 37 – Rod Impact Model Grid 

 

The first simulation performed was the simulation of the 1500 m/s run.  The rod 

impact model had parameters shown earlier in Table 6.  The rod was 4.8 cm long by 0.6 
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cm in diameter, fired at 4808.5 m/s horizontal and 3.2 m/s vertical.  For this case, a mesh 

slightly larger than that used by Szmerekovsky was utilized.  In the area of impact, cells 

were 0.0050 cm on a side, as opposed to the 0.0020 cm that Szmerekovsky used.[2]  

Early in the deformation event, voids are seen in the 1080 steel layer, beginning around 

5.5 µs.  These voids appear to be wear, which is described by Bayer as “progressive 

damage to a surface caused by relative motion with respect to another substance.”[15]  

An example of this apparent wear is seen in Figure 38, where the red material is the 

VascoMax 300 steel, the yellow material is the 1080 steel, and the white is representative 

of a void. 

 

 
Wear 

Figure 38 – Rod Impact Model Wear at 4.8 km/s 

Szmerekovsky and Laird [2,1] described a hump of material that was found to 

build as a gouge begins to form.  This is the precursor that causes the materials to 

impinge upon each other and begin to gouge.  The rod impact model developed this 

characteristic hump of material, as seen in Figure 39. The hump continues to increase in 

size as seen in Figure 40. As the hump continues to increase in size, it takes the classic 
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shape seen by both Szmerekovsky and Laird in their work.  Szmerekovsky’s gouge is 

seen in Figure 41.  The gouge formed using the rod impact model is seen in Figure 42. 

A simulation was performed with a finer mesh in the impact region, to study 

whether a more defined mesh would improve results.  The mesh size in the region 

surrounding the impact area was decreased in size from 0.0050 cm to 0.0025 cm.  The 

resulting gouge simulated using a finer mesh is seen in Figure 43, but does not show 

much improvement over the coarser mesh. 

 

wear hump 

Figure 39 – Hump formation at 4.8 km/s 
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hump 
increasing 
in size 

Figure 40 – Hump Growing 

 

 
Figure 41 – Gouge from Szmerekovsky’s work 
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Figure 42 – Rod Impact Model Gouge – 0.0050 cm mesh 

 

 
Figure 43 – Rod Impact Model Gouge - 0.0025 cm mesh 

The rod impact model has been shown to develop the basic shape of a gouge seen 

by Szmerekovsky and Laird; the question remained as to whether the internal properties 

that were present during the gouging event were similar to those seen by Szmerekovsky.  

As gouging occurs, the deformation in the vicinity of the gouge is virtually all plastic 
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deformation.  The plastic strain of the rail found by Szmerekovsky is shown in Figure 44.  

It is seen that in the portion of the rail that jets into the slipper, the plastic strain is 

approximately 5.5.  This very closely matches the plastic strain seen using the rod impact 

model, where the plastic strain is approximately 5.5, as seen in Figure 45.  Similarly, the 

plastic strain in the rod was determined.  Szmerekovsky’s model developed a plastic 

strain of approximately 5.5 in the slider, as can be seen in Figure 46.  The rod impact 

model developed a plastic strain of approximately 4.0, as is shown in Figure 47.  The 

lower plastic strain in the rod compared to the slider used by Szmerekovsky, may be due 

to the fact that there is much less energy in the rod impact model with which to deform 

the rod. 

The time scale determined in the Buckingham Pi analysis of the Szmerekovsky 

model and the rod impact model was 13.5.  What this means is that 13.5 µs in the 

Szmerekovsky model is equivalent to 1.0 µs in the rod impact model.  The time in both 

Figure 44 and Figure 45 is approximately 6.0 µs.  At this point in the Szmerekovsky 

model, the rod impact model should be at 0.44 µs, or vice versa, at this point in the rod 

impact model, the Szmerekovsky model should be at 81.0 µs.  This shows that the rod 

impact model does not exactly match the time scale of the Szmerekovsky model. 
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Figure 44 – Plastic Strain (Rail) – Szmerekovsky Model 

 

 
Figure 45 – Plastic Strain (Rail) – Rod Impact Model 
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Figure 46 – Plastic Strain (Slider) – Szmerekovsky Model 

 

 
Figure 47 – Plastic Strain (Rod) – Rod Impact Model 
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Szmerekovsky showed that as a gouge develops, a high-pressure core forms at the 

junction of the two materials as seen in Figure 48.  The rod impact model developed a 

similar high-pressure core in the same general area as in the Szmerekovsky model, see 

Figure 49.  Numerically they do not match very well, which is understandable, due to the 

small set of variables chosen for the Buckingham Pi scaling of the model.  With more 

variables involved, solutions would improve numerically.  Both models show the feature 

that the pressure tends to be centered more in the rail material (1080 steel). 

The deviatoric stress component tends to be the component of stress that is the 

most important in the development of plasticity.  The deviatoric stress component was 

studied by Szmerekovsky, and the stress profile was as seen in Figure 50.  The deviatoric 

stress component in the rod impact model was shown in Figure 51.  The horizontal stress 

contours seen in the Szmerekovsky model are seen in the rod impact model as well.  

These horizontal lines are likely due to numerical abnormalities brought about by the 

mesh size.  The rod impact model shows a spike in the deviatoric stress at the point where 

gouging is initiated, which is represented by the orange stress contour. 

Similarly, the shear stress using the two models was determined.  Szmerekovsky’s 

model is seen in Figure 52, and the rod impact model is shown in Figure 53.  The two 

models have similar profiles, and the values of stress are quite similar.  Both models 

showed an area of high, negative shear stress in the rod material above the jet of the rail 

material into the rod.  This high negative shear stress is followed by a high positive shear 

stress farther to the right along the crest of the jet. 
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Figure 48 – High-Pressure Core – Szmerekovsky 

 

 

Figure 49 – High-Pressure Core – Rod Impact Model 
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Figure 50 – Deviatoric Stress – Szmerekovsky 

 

 
Figure 51 – Deviatoric Stress – Rod Impact Model at Gouge Initiation 
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Figure 52 – Shear Stress – Szmerekovsky 

 

 

Figure 53 – Shear Stress – Rod Impact Model 
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Szmerekovsky also investigated the motion of the material within a gouge.  He 

saw that in the vicinity of a gouge, the material tends to flow in the general direction of 

the gouge’s formation.  His gouge model is shown in Figure 54, with the velocity vectors 

of the material represented by arrows.  The rod impact model developed a very similar 

velocity profile, as seen in Figure 55.  The rail material on the bottom of this figure has 

an apparent constant velocity to the left, which is due to the fact that the mesh is given a 

velocity as well, to maintain gouging in the finer meshed region 

Lastly, the temperature was investigated.  Szmerekovsky found a temperature 

profile as seen in Figure 56.  The temperature profile developed using the rod impact 

model is shown in Figure 57.  The temperatures appear very similar in that there is only a 

narrow region that is subjected to a higher temperature.  The Szmerekovsky model tends 

to more uniformly heat the material and also to have a higher temperature.  This is due to 

the smaller mesh utilized in the Szmerekovsky model, and the higher energy present in 

the Szmerekovsky model, that must be turned into heat. 
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Figure 54 – Velocity Profile – Szmerekovsky 

 

 

Figure 55 – Velocity Profile – Rod Impact Model 
 

 

96 



 

 
Figure 56 – Temperature Profile – Szmerekovsky 

 

 
Figure 57 – Temperature Profile – Rod Impact Model 
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Additionally, tracer points were used to investigate the exact response of specific 

points of material throughout the deformation event.  Points were chosen at a distance of 

0.01 cm above the material interface, so that a good representation of the boundary layer 

in the rod could be seen.  Since gouges were seen to occur at x-positions between 4.4 cm 

and 4.8 cm, fifty tracer points were spaced between 4.5 cm and 5.0 cm.  A diagram of the 

tracer points is provided in Figure 58. 

 
Figure 58 – Tracer Point Locations (Rod Impact Model) 

As deformation occurred, temperature and pressure were recorded, to investigate 

how these two variables vary as gouging occurs.  Three tracer points were chosen to 

study, based upon their movement during the gouging event.  The tracer points chosen 

were point number one, which is located at x=4.5 cm and y=0.01 cm, point number 10, 

which is located at x=4.59 cm and y=0.01 cm, and point number 20, which is located at 

x=4.69 cm and y=0.01 cm.  The reason these points were chosen will be seen shortly.   

  After 5.0 µs, the rod impact model has deformed in a manner more reminiscent 

of wear than gouging, as can be seen in Figure 59.  However, to the far right, the hump 

described earlier is beginning to form and grow.  At this point in the impact event, the 

tracer points have not been moved very much from their initial positions, with the 

exception of the tracer points around tracer point number 27. 
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Gouging has fully started by 5.25 µs, as seen in Figure 60.  The hump has 

increased in size, and the rod material, which is moving to the right, has begun to overrun 

the hump, forming the classic jet of material.  The hump has increased in size to 0.01 cm 

in height, and has started to displace tracer point 20 upwards, as the hump continues to 

move to the left.  Points 1 and 10 have not been displaced visibly at this time. 

At 5.25 µs, the hump of material caused by the impact has begun to form the 

classic material jet seen in previous work.  By 5.5 µs, jetting is clearly the dominant 

feature of deformation, see Figure 61.  At this time, material from the rod is clearly being 

pulled down into the target material, as shown by the dip in the tracer points.  It appears 

that point 10 is being dragged downward towards the lower jet of material.  Point 20 

however has not been involved in the lower jet, and appears to be passing above the 

upper jet of material. 

The features which were beginning to be seen at 5.5 µs, continue to develop at 

5.75 µs, as shown in Figure 62.  Tracer point 10 is clearly being pulled down into the jet 

of VascoMax 300 material, which is impinging into the 1080 steel target.  Additionally, it 

appears that point 1 may also be dragged downwards into the lower jet.  Point 20 has 

continued to pass above the upper jet and is nearly out of the deformation area. 

By 6.05 µs, the gouging event has nearly dragged tracer point 1 down into the 

lower material jet.  Point 10 appears to be at about 0.01 cm above the original interface, 

as compared to 0.003 cm as in Figure 62.  This shows that the event is drawing to a close, 

because the rod material is beginning to ride up out of the target material, which 
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eventually would lead to the materials separating and the gouging event ending.  Tracer 

point 20 has passed beyond the gouge. 

 
Figure 59 – Tracer Points at 5.0 µs 

 

 
Figure 60 – Tracer Points at 5.25 µs 
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Figure 61 – Tracer Points at 5.5 µs 

 
Figure 62 – Tracer Points at 5.75 µs 
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Figure 63 – Tracer Points at 6.05 µs 

The previous five figures present a physical basis for understanding what is 

happening at each tracer point at a given time step during deformation.  From these 

figures, temperature and pressure will be looked at and discussed. 

Tracer point 1 was the tracer point farthest from the initial point of impact, which 

was at 4.8 cm.  Since this point was farther from the impact region than the others, it 

would be assumed that it would take longer for the stress wave to reach this point and 

produce any effects.  This is shown to be accurate below about 5.7 µs, since the values of 

pressure and temperature seen in Figure 64 are nearly constant.  Referring to Figure 62, it 

is seen that around 5.7 µs, tracer point 1 begins to descend into the lower material jet.  At 

about 6.0 µs, the pressure at point 1 spikes to nearly 25.0 GPa, at this point, the stress 

wave affecting point 1 is reflecting around through the material jet, which explains the 

somewhat erratic nature of the pressure at this point.  At a peak pressure of 25.0 GPa, the 
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VascoMax 300 steel is being plastically deformed, since the yield strength of the steel is 

only 14.47 GPa.  The temperature spikes at the same point in time as the pressure, and 

reaches a maximum temperature of about 1300 K.  At these temperatures, Szmerekovsky 

predicted that the steel would form austenite, which was found to occur in recovered 

gouges from the HHSTT.[2]  Temperatures due to the impact were not high enough to 

melt the VascoMax 300 steel, which has a melting point of 2310 K.[1] 

 
(a) (b) 

Figure 64 – Tracer Point 1 (a) Pressure (b) Temperature 

Tracer point 10 reacted to the impact simulation in much the same way that tracer 

point 1 did.  Tracer point 10 showed an earlier reaction to the impact, as is seen in Figure 

65.  At about 5.5 µs, the pressure and temperature both begin a rapid rise to their peak 

values.  Referring back to Figure 61, it is seen that about this time is when tracer point 10 

begins to move down into the lower material jet.  At point 10, the pressure approaches 

33.0 GPa, while the temperature approaches 1300 K.  This temperature also means that 

tracer point 10 is austenite steel.  The peak pressure and temperature occurs at 6.0 µs, 

which corresponds in Figure 63 to the time when tracer point 10 is moving up the upper 

material jet.  At this point in the gouging event, the rod is still moving to the right at 4.8 
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km/s.  With tracer point 10 in the position that it is in, it will be under a tremendous 

normal load due to the velocity of the rod, thus causing the very high pressure. 

 
  (a)      (b) 

Figure 65 – Tracer Point 10 (a) Pressure (b) Temperature 

The last tracer point investigated, point 20, was seen in Figure 59 through Figure 

63 to pass generally above the gouge, and not get dragged down into the lower material 

jet.  As can be seen in Figure 66, this fact leads to some significantly different pressure 

and temperature histories.  The pressure and temperature both begin their rapid rise at 

around 5.1 µs, which corresponds roughly to the point at which the hump begins to 

deflect tracer point 20 up.  The peak pressure of approximately 17 GPa results in much 

less plastic deformation in this area, which is why gouging did not begin earlier in the 

event than it did.  The rapid drop off in pressure also shows that all of the plastic 

deformation at point 20 occurs over a very short time period.  The temperature graph 

leads to much the same conclusions, due to the plateau starting around 5.5 µs.  From 

Figure 61, it was seen that by 5.5 µs, tracer point 20 was beyond the crest of the material 

jet, and therefore nearly done with the gouging event.  Once it was beyond the crest of 
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the jet it should stay a fairly constant temperature, because there is no more directly 

applied stress, only stress due to reflections. 

 
(a) (b) 

Figure 66 – Tracer Point 20 (a) Pressure (b) Temperature 

 

In addition to the simulation of the 1500 m/s model developed by Szmerekovsky, 

a 3000 m/s model was also simulated.  In this case, the simulated velocity of the rod 

impact specimen was 9617 m/s horizontal by 6.4 m/s vertical.  This model also showed 

the appearance of wear, however gouging was never seen to occur.  The projectile 

deformed as seen in Figure 67 where the wear can be seen all along the rod material on 

top and the rail material on the bottom.  The mesh utilized in this simulation was 0.0050 

cm on a side. 

The rod impact model fired at 9.6 km/s did not develop gouging.  This model did 

develop some of the characteristics that were seen in the slower impact model, but 

gouging never did occur as in the 4.8 km/s model.  The deviatoric stress developed a high 

stress region, in much the same way as in the slower model, Figure 51, however gouging 

was not initiated in the 9.6 km/s model, as seen in Figure 68.  The materials were never 

able to gouge, because the velocity of impact was much greater than the material sound 
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speed, and the stress wave was never able to propagate ahead of the material which is 

moving at 9.6 km/s. 

 
Figure 67 – Rod Impact Model at 9.6 km/s 

 

 
Figure 68 – Deviatoric Stress – 9.6 km/s Model – No Gouge 
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The pressure found in the 9.6 km/s model showed a similar high-pressure core as 

seen in the 4.8 km/s model.  The gouge in the 4.8 km/s model was initiated when a high-

pressure core was formed, and rapid plastic deformation began to occur, as seen in Figure 

69.  A similar high-pressure core was also seen in the 9.6 km/s model, with pressures 

very nearly equal to those seen in the 4.8 km/s model.  This high-pressure core for the 9.6 

km/s model is seen in Figure 70.  The only difference is that in the slower model, the 

high-pressure core causes the gouging to occur, while the faster model it does not. 

 

Figure 69 – High Pressure Core at Gouge Initiation (4.8 km/s Model) 
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Figure 70 – High Pressure Core (9.6 km/s Model) – No Gouge 

 

 

4.3 Experimentally Verifiable Rod Impact Model 

 

The problem with the two models discussed earlier, the 1500 m/s and 3000 m/s 

models, is that to match Szmerekovsky’s models of the impact, it is necessary to launch 

the projectiles at 4.8 km/s and 9.6 km/s, respectively.  Facilities available on Wright 

Patterson AFB, capable of shooting impact specimens, currently provide the ability to 

reach approximately 2133 m/s, which is much lower than is needed to test the models 

developed here.  This led to the design of another model, based upon the experimental 

capabilities available. 
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Simply performing a simulation using the velocity of the gun available does not 

provide much insight into how the model relates to the HHSTT.  Therefore, it was 

decided to use the Buckingham Pi process in the reverse manner to determine what the 

rod impact model at 2133 m/s represents in terms of the HHSTT.  To begin, the size of 

the projectile was kept the same as for both of the previous models.  By keeping the 

diameter equal to 0.6 cm and the length equal to 4.8 cm, scaling was maintained with 

both the Szmerekovsky model and the original HHSTT model.  To maintain the velocity 

scaling, the original Π3 was used, which was 0.125.  The horizontal velocity was then 

assumed to be 2133 m/s, and from this, the Pi parameters used in scaling down the 

Szmerekovsky model were calculated for this new model.  These values are seen in Table 

7. 

Table 7 – Experimentally Verifiable Rod Impact Model Pi Parameters 
 

 

 Experimentally 
Reproducible Rod 

Impact Model 
ux 2133 m/s 
uy -2 m/s 
Π1 0.125 
Π3 -6.667x10-4

Π4 2.221 
Π5 0.500 
Π6 0 
Π7 1.432 
Π8 180.5 
Π9 71.066 

The goal was to convert these values back into an equivalent experiment at the 

HHSTT.  This was accomplished by going back to the definition of the Pi parameters 

from Section 3.3.  From the original development, Π7 was shown to be, 
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Similar equations exist for the elastic modulus (Π8) and the shear modulus (Π9), however 

they do not add anything to the solution, because the only differences between the three is 

the first term on the right, which we assume are constants with the material.  The second 

term on the right of the three definitions is exactly the same; therefore it is pointless to 

solve the second two equations.  The mass, m, in the above equation is the combined 

mass of the equivalent slipper and the sled mass.  From this equation, a few assumptions 

are required as to the conditions at the HHSTT.  The first assumption is that the same 

slipper is in use for the equivalent Holloman model as is used for the original HHSTT 

model developed by Szmerekovsky.  This means that the yield strength and mass of the 

equivalent slipper are known, as well as the length in the numerator.  This leaves the 

mass of the equivalent sled and the equivalent velocity as the only two unknowns.  For 

this research, the worst case of a mass of 800 kg was assumed, and therefore the 

equivalent velocity was found to be, 
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From this last equation, and with the assumptions presented in the previous discussion, 

the equivalent HHSTT experiment can be shown to have the parameters seen in Table 8, 

and a comparison between the rod impact model and the equivalent HHSTT experiment 

are shown pictorially in Figure 71. 
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Table 8 – Equivalent HHSTT Experiment 

 Rod 
Impact 
Model 

Equivalent 
HHSTT 

Experiment 
ux (m/s) 2133  669.0  
uy (m/s) -1.4  -0.446  

Length (cm) 4.8  20.32  
Diameter (cm) 0.6  2.54  
Sled Mass (kg) Not 

Applicable
800  

 

 

Figure 71 – Equivalent HHSTT Experimental Sled 

 

Simulation using these parameters predicted deformation as seen in Figure 72.  

Deformation seen is more reminiscent of wear as described earlier. 

Simulation of an 800 kg sled at 669 m/s did not show the characteristics of 

gouging.  It was decided to alter the rod impact model parameters to increase the 

equivalent velocity of impact that the HHSTT would see.  The two parameters that can be 

changed are the diameter of the impact rod, and the mass assumed for the sled.  A variety 

of combinations were investigated by changing the rod diameter and the sled mass.  

Table 9 shows a few of the options that were developed.   
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Figure 72 – Rod Impact

 

Table 9 – Equivalent HH

Option Rod Diam
(cm) 

1 .6 
2 .6 
3 .5 
4 .5 
5 .4 
6 .4 
7 .3 
8 .3 

 

It was decided to run only t

velocity at the HHSTT, because it h

does not occur below 1500 m/s.  Th
wear
 
 Model Simulation at 2.13 km/s – No Gouge 

STT Velocity by Varying Input Parameters 

eter Sled Mass 
(kg) 

Equivalent HHSTT 
Velocity (m/s) 

600  769.7 
300 1073.0 
600   843.1 
300 1175.0 
600   942.7 
300 1314.0 
600 1089.0 
300 1517.0 

he last option which has the highest equivalent 

as been witnessed in the field that generally gouging 

e equivalent HHSTT test sled is shown in Figure 73.  
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The results for this simulation are shown in Figure 74.  Again, at this velocity, it appears 

that only wear occurs, and a gouge does not form. 

 

Figure 73 – Equivalent HHSTT Experimental Sled (300 kg) 

 

 

wear 

Figure 74 – Rod Impact Model at 2133 m/s - 0.3 cm diameter – Simulates 300 kg Sled 

Simulations involving various test sled masses and velocities have shown that 

there is no single value of sled mass or velocity that can guarantee gouging would occur.  

It was shown that a sled at 1500 m/s with a mass of 800 kg gouges, while a sled at the 

same velocity, but a mass of 300 kg will not gouge.  Similarly, a sled with a mass of 800 
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kg will gouge at 1500 m/s, but will not gouge at 669 m/s.  These facts lead to the 

assumption that there is a relationship between velocity and mass that would predict 

when gouging would occur. 
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Chapter 5 – Conclusions and Recommendations 
 
 

5.1 Conclusions 

 

The goal of this research was to develop a ballistic impact model that would 

simulate gouging as seen at the Holloman High Speed Test Track.  The model developed 

must be experimentally verifiable, using the compressed gas guns available at Wright 

Patterson Air Force Base.  The hydrocode computer program CTH was used to simulate 

the ballistic impacts, to investigate whether the gouging phenomena was present.  To 

reach the main goal of this thesis, a series of different models were used. 

The first model utilized was a simulation of a Taylor impact test.  This simulation 

was performed to verify the parameters used in future CTH simulations.  The Taylor test 

was chosen as a verification tool, because of its simplicity, and the level of understanding 

of the principles behind it.  Additionally, the data and pictures obtained from the article 

by Jones et al.[14] were perfectly suited to verifying CTH simulations. 

The baseline CTH model was based upon the model used by Szmerekovsky, 

making use of the options that he used.  The simulation appeared to give fairly accurate 

deformations, see Figure 27(b).  The options that were altered generally gave expected 

results.  It was imagined that changing the yield strength in mixed cells to zero in mixed 

cells would give unrealistically low material strength, which was shown to be the case by 

the specimen appearing to erode away at the interface due to material fracturing from the 

bulk of the material and separating.  Changing the manner in which materials and 

pressures in mixed cells were allocated also changed the solution, except in this case it 

115 



 

was for the better, which was expected, because the baseline model did not allow for 

pressure relaxation within a cell, which is needed for the conservation equations.  Giving 

voids strength, by not compressing them from the material first, created a situation where 

fracture occurred unrealistically, again causing erosion that was not seen experimentally.  

The last option, the slide line approximated the impact surface as being frictionless, and 

therefore only plasticity played a part at the interface.  This plasticity at the interface 

developed deviatoric stresses farther from the interface.  This option gave good results as 

well, and matched the experimental conditions that the end of the rod and the target were 

both polished. 

After verifying that the correct input options were being used, the rod impact 

model was developed and sized using the Buckingham Pi theorem.  The rod impact 

model was used to simulate the 1500 m/s HHSTT experiment, which was simulated 

realistically by Szmerekovsky.  This model was shown to develop both wear and gouging 

of the materials.  The wear developed prior to the gouging, which is accurate; because 

gouging is actually a case where the wear builds up to a critical point, at which the 

materials form a hump and jet into each other.   

The gouges developed using the rod impact model, Figure 42, and the 

Szmerekovsky model, Figure 41, do not appear exactly the same, due in large part to the 

scale of each simulation.  The gouge in the rod impact model is seen to be approximately 

0.03 cm tall, while that in the Szmerekovsky model is 0.1 cm tall.  Within the interaction 

zone, the mesh of the rod impact model is 0.0050 cm, while the Szmerekovsky model 

uses a mesh of 0.0025 cm.  In effect, there are only six cells vertically in the gouged zone 
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of the rod impact model, while the Szmerekovsky model has forty cells in the gouged 

area.  This explains the lack of smoothness in the rod impact model, which is seen in the 

Szmerekovsky model.   

The rod impact model did a very good job of modeling the gross deformation seen 

in the formation of a gouge, Figure 42.  Exact dimensionality was not achieved with the 

rod impact model, due to the differences in scale between it and the Szmerekovsky 

model.  The rod impact model also represented the high-pressure core seen by 

Szmerekovsky very well.  The very high shear stress gradient on the crest of the jet seen 

in Szmerekovsky’s work, was simulated quite well by the rod impact model.  

Szmerekovsky showed that the material within and around a gouge tends to flow up and 

along the jetting material.  This feature of material flow was also seen using the rod 

impact model.  Lastly, the rod impact model matched the plastic deformation seen in the 

Szmerekovsky model quite well. 

The time scale developed through the Buckingham Pi relationship did not match 

very well between the two models.  It appeared that gouging occurred at the same time 

for both the Szmerekovsky model and the rod impact model, whereas it should have 

occurred at 0.44 µs in the rod impact model, as opposed to the 6.0 µs that it actually 

occurred.  There are many factors that could cause this parameter to be off.  First, the 

time of interest may not actually be taken from the beginning of the simulation, it may be 

the taken from the initiation of gouging.  The mass of material directly above the area 

that gouges may also play a role, in adding inertia directly into the gouge.  The 

Szmerekovsky model is much thicker than the rod impact model, 43 cm for 
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Szmerekovsky and 0.6 cm for the rod impact model.  All of the possibilities go back to 

the fact that only ten invariants were found in the Buckingham Pi analysis of the two 

models.  If one were able to put all possible physical variables between the two models 

into a single Buckingham Pi analysis, then the rod impact model developed would 

exactly match the Szmerekovsky model.  Overall though, the rod impact model develops 

an excellent representation of gouging, even if time scales are not exact.  

Gouging never occurred in the simulation of the 3000 m/s HHSTT sled run.  This 

is due to the fact that as the materials interact, the relative velocity between them is 9600 

m/s, while the velocity at which energy can be dissipated (the material sound speed), is 

only 4930 m/s.  This means that the materials are interacting at almost twice the speed at 

which any energy can be transferred.  Because of this, the materials will instantaneously 

fracture due to the increase of energy in the cells at the interface.  This disintegration of 

material has been called erosion.  Due to this fact, the rod impact model developed here is 

incapable of modeling what occurs at the HHSTT at a velocity of 3000 m/s.  It may be 

possible to artificially develop gouging at this velocity if yield strength is adjusted higher. 

The last two models were designed to simulate conditions that are actually 

possible to duplicate in laboratory facilities at Wright Patterson AFB.  The first model 

simulated an actual sled arrangement utilized at the HHSTT, but the equivalent HHSTT 

velocity was found based upon the velocity possible at Wright Patterson AFB.  Using the 

Buckingham Pi theorem, along with the invariants developed in, the equivalent HHSTT 

velocity was found to be 669.0 m/s.  This velocity is much lower than the velocity where 

gouging is generally found, so it was expected that a gouge would not form.  Simulations 
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proved that at this velocity and model size, a gouge did not form, however the 

characteristics associated with wear were present. 

At velocities lower than approximately 1500 m/s, the HHSTT does not generally 

see gouging.  Deformations that are seen in this velocity range tend to be described as 

wear, which was described earlier as “progressive damage to a surface caused by relative 

motion with respect to another substance.”[15]  Wear was witnessed for the relative 

velocity of 669.0 m/s, as modeled using a rod impact velocity of 2133 m/s.  The likely 

reason that gouging did not occur at this velocity is that the kinetic energy of a sled 

traveling at 1500 m/s is five times greater than that of a sled traveling 669.0 m/s.  It was 

clear that to initiate gouging, a parameter or parameters would have to be changed, to 

increase the relative velocity into the range where gouging occurs. 

A combination of decreasing the assumed weight of the test sled, and also 

decreasing the diameter of the impacting rod increased the relative velocity of the 

simulated HHSTT sled up to 1517 m/s.  Simulation using these parameters did not 

develop gouging either.  This leads to the conclusion that velocity is not the only factor 

important to the gouging phenomena.  The other factor that is likely to cause gouging is 

the mass of the sled.  In order to reach a relative velocity of 1500 m/s, it was necessary to 

assume that the test sled had a mass of only 300 kg.  A sled of mass 800 kg would have 

2.67 times the kinetic energy of a sled with a mass of 300 kg.  The higher kinetic energy 

of the larger sled would deposit more energy into the rail than would the smaller sled, 

causing higher temperatures and increased plasticity. 
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The rod impact model was shown to simulate gouging exceptionally well in a 

global sense.  Overall, the deformation seen with the rod impact model shows that a 

gouge is fully developed using the simplified model.  Additionally, some of the features 

seen in the pressure contours and shear stress contours showed excellent correlation.  

Differences between the Szmerekovsky model and the rod impact model become 

apparent when values of pressure, stress, temperature, etc. are investigated.  Numerical 

differences between the models suggest that perhaps in the Buckingham Pi process, 

important dimensioned quantities were left out.  In scaling the rod impact model, 13 

dimensioned quantities were used.  By using more dimensioned quantities, perhaps better 

numerical agreement could be achieved. 

In conclusion, the model developed in this research does simulate the formation 

of gouging in a high velocity oblique impact experiment.  The gouge developed is very 

good in a global sense, meaning that gross deformation is modeled well, however local 

values of state variables are not exact.  This leads to the conclusion that the model 

developed here is useful for investigating gouging, but at the moment is not useful in 

design of slipper/rail arrangements.  The equivalent HHSTT models that can be 

investigated using facilities available at Wright Patterson AFB, were shown to develop 

characteristics of wear, which means that the equivalent model could be useful in better 

understanding how wear affects the HHSTT. 
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5.2 Recommendations for Future Research 

 

It was assumed by Szmerekovsky that the mass of the sled was evenly distributed 

between the four slippers.  This may be fairly precise when the test sled is at rest, but it 

may not hold any validity during an actual experiment.  A combination of aerodynamic 

forces, rail characteristics, and sled dynamics can lead to the sled moving with a yaw, a 

pitch, or a roll.  Any of these movements could alter the weight distribution between the 

four slippers, possibly causing an impact with the rail where only one slipper was in 

contact, thereby applying the entire load to a single slipper, increasing four fold the 

kinetic energy which was used in both the Szmerekovsky model and the rod impact 

model.  Therefore, the validity of the manner in which the sled mass is divided should be 

investigated. 

The ultimate goal of this research was to develop a simplified model of gouging, 

which could be experimentally verified to be correct.  This goal was accomplished, in 

that a model was developed that showed the development of a gouge similar to the gouge 

seen in research by Szmerekovsky and others.  Experimental verification of the rod 

impact model with a diameter of 0.6 cm and a length of 4.8 cm, fired at a velocity of 4.8 

km/s would provide verification that the model developed herein is accurate.  Achieving 

this velocity would require use of a different compressed air gun than what is available 

for use at Wright Patterson AFB. To further verify the rod impact model, it would be 

necessary to develop a model that matches time scales with the Szmerekovsky model. 
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Additional simulations using a variety of velocities and masses would be very 

valuable in further verifying what combinations of mass and velocity develop gouging.  

Further simulations would be able to better clarify where the lines between no gouging 

and gouging are located.  This graph could then be compared with observations made by 

the HHSTT engineers of when gouging occurs in physical experiments.  If possible, 

gouges seen in simulation should be experimentally verified.  

In general, the test track at Holloman AFB has an epoxy coating on the rails, 

which serves as a type of lubricant to prevent gouging.  Addition of a coating to the target 

material of the models developed here would allow characterization of the manner in 

which coatings would affect the rod impact model.  These simulations could be compared 

to the work by Szmerekovsky that studied the affects of a coating on the gouging 

phenomena. 
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Appendix 1 
 

CTH Input Deck – Taylor Impact Model 
 
*eor* genin 
Taylor Test: Copper on 4340 Steel, V=176 m/s 
control 
  mmp 
  ep 
  vpsave 
endcontrol 
mesh      * Define the mesh using this area 
  block 1  geom=2dc    type=e 
    x0=0.0 
      x1  n=80  w=2 dxf=0.025 
      x2  n=40  w=4 dxf=0.1 
    endx 
    y0=-20.0 
      y1  n=150 w=15 dyf=0.1 
      y2  n=480 w=12 dyf=0.025 
    endy 
  endb 
endmesh 
insertion of material    * Define the areas within mesh that  
   block 1     * contain material, apply velocities 
     package topblock 
       material 1 
       numsub 50 
       yvel -176e2 
       insert box 
         p1 0.0 0.01 
         p2 0.381 5.725 
       endinsert 
     endpackage 
     package bottomblock 
       material 2 
       numsub 50 
       insert box  
         p1 0.0, 0.0 
  p2 6, -17.5 
       endinsert 
     endpackage 
  endblock 
endinsertion 
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edit 
  block1 
  expanded 
  endblock 
endedit 
tracer       * This defines tracer points 
   add 0.381, 0.01 to 0.381, 5.725 number=60 
endt 
eos       * Set equations of state for  
   MAT1 SES COPPER    * materials inserted earlier 
   MAT2 SES STEEL_4340 
endeos 
epdata       * Define elastic-plastic  
 mix 3       * material properties  
   matep 1 jo=1 * copper 
   matep 2 jo=4340_TEMP_MART 
   slide 1 2 
 vpsave 
 lstrain 
endep 
 
*eor* cthin      * This section describes how  
Taylor Test: Copper on 4340 Steel, V=176 m/s * CTH will run problem  
control 
  mmp 
  tstop = 100.0e-6          * Defines time for sim to stop 
endc 
Convct 
 convection=1 
 interface=high_resolution 
endc 
fracts 
 pfrac1 -10.0e9 
 pfmix  -12.0e9 
 pfvoid -12.0e9 
endf 
edit 
  shortt 
    tim 0.0,   dt = 1.0 
  ends 
  longt 
    tim 0.0,   dt = 1.0 
  endl 
  plott 
    tim 0.0    dt = 1.0e-6          * Defines when to record  
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  endp       * data 
  histt 
   tim  0.0,   dt = 1.0e-6       
   htracer all 
  endh 
ende 
boundary      * Sets boundary conditions 
   bhy   
     bl 1 
       bxb = 0 , bxt = 1 
       byb = 1 , byt = 1 
     endb 
   endh 
endb 
cellthermo 
 mmp3                  
 ntbad 100000 
endc 
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Appendix 2 
 

CTH Input Deck – Oblique Rod Impact Model 

*eor* genin 
V300/1080 4.8x.6cm circular tip - ~4.8km/s by 3.2m/s 
* 
*_________________________________________________________________ 
* 
control 
  mmp 
  ep 
  vpsave 
endcontrol 
* 
*_________________________________________________________________ 
* 
mesh 
  block 1 geom=2dr  type=e    * define mesh 
    x0=0.0 
       x1 n=40  w=4.000  dxf=0.1000 
       x2 n=60  w=0.600  dxf=0.0100 
       x3 n=160 w=0.800  dxf=0.0050 
       x4 n=60  w=0.600  dxf=0.0100 
       x5 n=20  w=2.000  dxf=0.1000 
    endx 
* 
    y0=-4.0 
       y1 n=20  w=2.000  dyf=0.1000 
       y2 n=140 w=1.400  dyf=0.0100 
       y3 n=240 w=1.200  dyf=0.0050 
       y4 n=40  w=0.400  dyf=0.1000 
    endy 
  endblock 
endmesh 
* 
*_________________________________________________________________ 
* 
insertion of material     
  block 1     * insert cylindrical rod and rotate the rod 
    package rod 
      material 1 
      numsub 100 
      xvel 4808.5e2 
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      yvel -3.21e2 
      insert box 
        p1 0.0 0.0 
        p2 4.8 0.6 
        ppoint 4.8 0.3 
        angle -0.0382 
      endinsert 
      delete circle 
        center 4.8 0.3 
        radius 0.3 
      enddelete 
    endpackage 
 
    package tip      * insert circular tip of rod 
      material 1 
      numsub 100 
      xvel 4808.5e2 
      yvel -3.21e2 
      insert circle 
        center 4.8 0.3 
        radius 0.3 
      endinsert 
    endpackage 
 
    package target     * insert “rail” material 
      material 2 
      numsub 100 
      insert box 
        p1 0.0 -4.0 
        p2 8.0 0.0 
      endinsert 
    endpackage 
  endblock 
endinsertion 
* 
*_________________________________________________________________ 
* 
edit 
  block1 
  expanded 
  endblock 
endedit 
* 
*_________________________________________________________________ 
* 
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eos 
  MAT1 SES STEEL_V300    * define material EOS 
  MAT2 SES IRON 
endeos 
* 
*_________________________________________________________________ 
* 
epdata      * define constitutive equations of materials 
  mix 3 
  matep 1 
    st=19 
    yield=14.47e9 
    poisson=0.27 
  matep 2 
    johnson-cook=IRON 
    yield=7.0e9 
    poisson=0.28 
  slide 1 2 
  vpsave 
  lstrain 
endep 
* 
*_________________________________________________________________ 
*_________________________________________________________________ 
* 
*eor* cthin 
* 
V300/1080 4.8x.6cm circular tip - ~4.8km/s by 3.2m/s 
* 
*_________________________________________________________________ 
* 
control 
  mmp 
  tstop=10.0e-6    * define stop time of sim 
endcontrol 
* 
*_________________________________________________________________ 
* 
convct 
  convection=1 
  interface=high_resolution 
endconvct 
* 
*_________________________________________________________________ 
* 
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fracts 
  pfrac1=-10.0e9 
  pfrac2=-2.5e9 
  pfmix=-12.0e9 
  pfvoid=-12.0e9 
endfracts 
* 
*_________________________________________________________________ 
* 
edit 
  shortt 
    tim 0.0, dt=1.0 
  ends 
  longt 
    tim 0.0, dt=1.0 
  endl 
  plott 
    tim 0.0, dt=0.050e-6 
  endp 
ende 
* 
*_________________________________________________________________ 
* 
boundary 
  bhy 
    bl 1 
      bxb=1 , bxt=1 
      byb=1 , bxt=1 
    endb 
  endh 
endb 
* 
*_________________________________________________________________ 
* 
vadd 
  block=1 
  tadd=0.0 
  xvel=-4808.5e2    * apply a velocity to keep gouge in mesh 
endvadd 
* 
*_________________________________________________________________ 
* 
cellthermo 
  mmp3 
  ntbad 1000000 
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endc 
* 
*_________________________________________________________________ 
*_________________________________________________________________ 
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Appendix 3 
Pressure History Plots 
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All points beyond point 40 are constant pressure because they are not in the rod. 
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Appendix 4
Temperature History Plots 
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All points beyond point 40 are constant temperature because they are not in the rod. 
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